This is the first post of the 2 part series where we will set-up production grade Kubernetes logging for applications deployed in the cluster and the cluster itself. We will be using Elasticsearch as the logging backend for this. The Elasticsearch set-up will be extremely scalable and fault tolerant.
1. Deployment Architecture
- Elasticsearch Data Node Pods are deployed as a Stateful Set with a headless service to provide Stable Network Identities.
- Elasticsearch Master Node Pods are deployed as a Replica Set With a headless service which will help in Auto-discovery.
- Elasticsearch Client Node Pods are deployed as a Replica Set with an internal service which will allow access to the Data Nodes for R/W requests.
- Kibana and ElasticHQ Pods are deployed as Replica Sets with Services accessible outside the Kubernetes cluster but still internal to your Subnetwork (not publicly exposed unless otherwise required). HPA (Horizontal Pod Auto-scaler) deployed for Client Nodes to enable auto-scaling under high load.
Important things to keep in mind:
- Setting ES_JAVA_OPTS env variable.
- Setting CLUSTER_NAME env variable.
- Setting NUMBER_OF_MASTERS (to avoid split-brain problem) env variable for master deployment. In case of 3 masters we have set it as 2.
- Setting correct Pod-AntiAffinity policies among similar pods in order to ensure HA if a worker node fails.
Let’s jump right at deploying these services to our GKE cluster.
1.1 Deployment and Headless Service for Master Nodes
Deploy the following manifest to create master nodes and the headless service.
apiVersion: v1 kind: Namespace metadata: name: elasticsearch --- apiVersion: apps/v1beta1 kind: Deployment metadata: name: es-master namespace: elasticsearch labels: component: elasticsearch role: master spec: replicas: 3 template: metadata: labels: component: elasticsearch role: master spec: affinity: podAntiAffinity: preferredDuringSchedulingIgnoredDuringExecution: - weight: 100 podAffinityTerm: labelSelector: matchExpressions: - key: role operator: In values: - master topologyKey: kubernetes.io/hostname initContainers: - name: init-sysctl image: busybox:1.27.2 command: - sysctl - -w - vm.max_map_count=262144 securityContext: privileged: true containers: - name: es-master image: quay.io/pires/docker-elasticsearch-kubernetes:6.2.4 env: - name: NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace - name: NODE_NAME valueFrom: fieldRef: fieldPath: metadata.name - name: CLUSTER_NAME value: my-es - name: NUMBER_OF_MASTERS value: "2" - name: NODE_MASTER value: "true" - name: NODE_INGEST value: "false" - name: NODE_DATA value: "false" - name: HTTP_ENABLE value: "false" - name: ES_JAVA_OPTS value: -Xms256m -Xmx256m - name: PROCESSORS valueFrom: resourceFieldRef: resource: limits.cpu resources: limits: cpu: 2 ports: - containerPort: 9300 name: transport volumeMounts: - name: storage mountPath: /data volumes: - emptyDir: medium: "" name: "storage" --- apiVersion: v1 kind: Service metadata: name: elasticsearch-discovery namespace: elasticsearch labels: component: elasticsearch role: master spec: selector: component: elasticsearch role: master ports: - name: transport port: 9300 protocol: TCP clusterIP: None
If you follow the logs of any of the master-node pods, you will witness the master election among them. This is when the master-node pods choose which one is the leader of the group. When following the logs of the master-nodes, you will also see when new data and client nodes are added.
root$ kubectl -n elasticsearch logs -f po/es-master-594b58b86c-9jkj2 | grep ClusterApplierService [2018-10-21T07:41:54,958][INFO ][o.e.c.s.ClusterApplierService] [es-master-594b58b86c-9jkj2] detected_master {es-master-594b58b86c-bj7g7}{1aFT97hQQ7yiaBc2CYShBA}{Q3QzlaG3QGazOwtUl7N75Q}{10.9.126.87}{10.9.126.87:9300}, added {{es-master-594b58b86c-lfpps}{wZQmXr5fSfWisCpOHBhaMg}{50jGPeKLSpO9RU_HhnVJCA}{10.9.124.81}{10.9.124.81:9300},{es-master-594b58b86c-bj7g7}{1aFT97hQQ7yiaBc2CYShBA}{Q3QzlaG3QGazOwtUl7N75Q}{10.9.126.87}{10.9.126.87:9300},}, reason: apply cluster state (from master [master {es-master-594b58b86c-bj7g7}{1aFT97hQQ7yiaBc2CYShBA}{Q3QzlaG3QGazOwtUl7N75Q}{10.9.126.87}{10.9.126.87:9300} committed version [3]])
It can be seen above that the es-master pod named es-master-594b58b86c-bj7g7 was elected as the leader and the other 2 pods were added to the cluster. The headless service named elasticsearch-discovery is set by default as an env variable in the docker image and is used for discovery among the nodes. This can of course be overridden.
1.2 Data Nodes Deployment
We will use the following manifest to deploy Stateful Set and Headless Service for Data Nodes:
apiVersion: v1 kind: Namespace metadata: name: elasticsearch --- apiVersion: storage.k8s.io/v1beta1 kind: StorageClass metadata: name: fast provisioner: kubernetes.io/gce-pd parameters: type: pd-ssd fsType: xfs allowVolumeExpansion: true --- apiVersion: apps/v1beta1 kind: StatefulSet metadata: name: es-data namespace: elasticsearch labels: component: elasticsearch role: data spec: serviceName: elasticsearch-data replicas: 3 template: metadata: labels: component: elasticsearch role: data spec: affinity: podAntiAffinity: preferredDuringSchedulingIgnoredDuringExecution: - weight: 100 podAffinityTerm: labelSelector: matchExpressions: - key: role operator: In values: - data topologyKey: kubernetes.io/hostname initContainers: - name: init-sysctl image: busybox:1.27.2 command: - sysctl - -w - vm.max_map_count=262144 securityContext: privileged: true containers: - name: es-data image: quay.io/pires/docker-elasticsearch-kubernetes:6.2.4 env: - name: NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace - name: NODE_NAME valueFrom: fieldRef: fieldPath: metadata.name - name: CLUSTER_NAME value: my-es - name: NODE_MASTER value: "false" - name: NODE_INGEST value: "false" - name: HTTP_ENABLE value: "false" - name: ES_JAVA_OPTS value: -Xms256m -Xmx256m - name: PROCESSORS valueFrom: resourceFieldRef: resource: limits.cpu resources: limits: cpu: 2 ports: - containerPort: 9300 name: transport volumeMounts: - name: storage mountPath: /data volumeClaimTemplates: - metadata: name: storage annotations: volume.beta.kubernetes.io/storage-class: "fast" spec: accessModes: [ "ReadWriteOnce" ] storageClassName: fast resources: requests: storage: 10Gi --- apiVersion: v1 kind: Service metadata: name: elasticsearch-data namespace: elasticsearch labels: component: elasticsearch role: data spec: ports: - port: 9300 name: transport clusterIP: None selector: component: elasticsearch role: data
The headless service in the case of data nodes provides stable network identities to the nodes and also helps with the data transfer among them.It is important to format the persistent volume before attaching it to the pod. This can be done by specifying the volume type when creating the storage class. We can also set a flag to allow volume expansion on the fly. More can be read about that here.
... parameters: type: pd-ssd fsType: xfs allowVolumeExpansion: true ...
1.3 Client Nodes Deployment
We will use the following manifest to create the Deployment and External Service for the Client Nodes
apiVersion: apps/v1beta1 kind: Deployment metadata: name: es-client namespace: elasticsearch labels: component: elasticsearch role: client spec: replicas: 2 template: metadata: labels: component: elasticsearch role: client spec: affinity: podAntiAffinity: preferredDuringSchedulingIgnoredDuringExecution: - weight: 100 podAffinityTerm: labelSelector: matchExpressions: - key: role operator: In values: - client topologyKey: kubernetes.io/hostname initContainers: - name: init-sysctl image: busybox:1.27.2 command: - sysctl - -w - vm.max_map_count=262144 securityContext: privileged: true containers: - name: es-client image: quay.io/pires/docker-elasticsearch-kubernetes:6.2.4 env: - name: NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace - name: NODE_NAME valueFrom: fieldRef: fieldPath: metadata.name - name: CLUSTER_NAME value: my-es - name: NODE_MASTER value: "false" - name: NODE_DATA value: "false" - name: HTTP_ENABLE value: "true" - name: ES_JAVA_OPTS value: -Xms256m -Xmx256m - name: NETWORK_HOST value: _site_,_lo_ - name: PROCESSORS valueFrom: resourceFieldRef: resource: limits.cpu resources: limits: cpu: 1 ports: - containerPort: 9200 name: http - containerPort: 9300 name: transport volumeMounts: - name: storage mountPath: /data volumes: - emptyDir: medium: "" name: storage --- apiVersion: v1 kind: Service metadata: name: elasticsearch namespace: elasticsearch labels: component: elasticsearch role: client spec: selector: component: elasticsearch role: client ports: - name: http port: 9200 type: LoadBalancer
The purpose of the service deployed here is to access the ES Cluster from outside the Kubernetes cluster but still internal to our subnet. The annotation “cloud.google.com/load-balancer-type: Internal” ensures this.
However, if the application reading/writing to our ES cluster is deployed within the cluster then the Elasticsearch service can be accessed by http://elasticsearch.elasticsearch:9200.
Once all components are deployed we should verify the following
- Elasticsearch deployment from inside the Kubernetes cluster using an Ubuntu container.
root$ kubectl run my-shell --rm -i --tty --image ubuntu -- bash root@my-shell-68974bb7f7-pj9x6:/# curl http://elasticsearch.elasticsearch:9200/_cluster/health?pretty { "cluster_name" : "my-es", "status" : "green", "timed_out" : false, "number_of_nodes" : 7, "number_of_data_nodes" : 2, "active_primary_shards" : 0, "active_shards" : 0, "relocating_shards" : 0, "initializing_shards" : 0, "unassigned_shards" : 0, "delayed_unassigned_shards" : 0, "number_of_pending_tasks" : 0, "number_of_in_flight_fetch" : 0, "task_max_waiting_in_queue_millis" : 0, "active_shards_percent_as_number" : 100.0 }
2. Elasticsearch deployment from outside the cluster using the GCP Internal Load balancer IP (in this case 10.9.120.8). When we check the health using curl http://10.9.120.8:9200/_cluster/health?pretty the output should be the same as above.
3. Anti-Affinity Rules for our ES-Pods
root$ kubectl -n elasticsearch get pods -o wide NAME READY STATUS RESTARTS AGE IP NODE es-client-69b84b46d8-kr7j4 1/1 Running 0 10m 10.8.14.52 gke-cluster1-pool1-d2ef2b34-t6h9 es-client-69b84b46d8-v5pj2 1/1 Running 0 10m 10.8.15.53 gke-cluster1-pool1-42b4fbc4-cncn es-data-0 1/1 Running 0 12m 10.8.16.58 gke-cluster1-pool1-4cfd808c-kpx1 es-data-1 1/1 Running 0 12m 10.8.15.52 gke-cluster1-pool1-42b4fbc4-cncn es-master-594b58b86c-9jkj2 1/1 Running 0 18m 10.8.15.51 gke-cluster1-pool1-42b4fbc4-cncn es-master-594b58b86c-bj7g7 1/1 Running 0 18m 10.8.16.57 gke-cluster1-pool1-4cfd808c-kpx1 es-master-594b58b86c-lfpps 1/1 Running 0 18m 10.8.14.51 gke-cluster1-pool1-d2ef2b34-t6h9
1.4 Scaling Considerations
We can deploy autoscalers for our client nodes depending on our CPU thresholds. A sample HPA for client node might look something like this
apiVersion: autoscaling/v1 kind: HorizontalPodAutoscaler metadata: name: es-client namespace: elasticsearch spec: maxReplicas: 5 minReplicas: 2 scaleTargetRef: apiVersion: extensions/v1beta1 kind: Deployment name: es-client targetCPUUtilizationPercentage: 80
Whenever the autoscaler kicks in, we can watch the new client-node pods being added to the cluster by observing the logs of any of the master-node pods.
In case of Data-Node Pods all we have to do is increase the number of replicas using the K8 Dashboard or GKE console. The newly created data node will be automatically added to the cluster and will start replicating data from other nodes. Master-Node Pods do not require auto scaling as they only store cluster-state information. In case you want to add more data nodes make sure there is not an even number of master nodes in the cluster. Also, make sure the environment variable NUMBER_OF_MASTERS is updated accordingly.
#Check logs of es-master leader pod root$ kubectl -n elasticsearch logs po/es-master-594b58b86c-bj7g7 | grep ClusterApplierService [2018-10-21T07:41:53,731][INFO ][o.e.c.s.ClusterApplierService] [es-master-594b58b86c-bj7g7] new_master {es-master-594b58b86c-bj7g7}{1aFT97hQQ7yiaBc2CYShBA}{Q3QzlaG3QGazOwtUl7N75Q}{10.9.126.87}{10.9.126.87:9300}, added {{es-master-594b58b86c-lfpps}{wZQmXr5fSfWisCpOHBhaMg}{50jGPeKLSpO9RU_HhnVJCA}{10.9.124.81}{10.9.124.81:9300},}, reason: apply cluster state (from master [master {es-master-594b58b86c-bj7g7}{1aFT97hQQ7yiaBc2CYShBA}{Q3QzlaG3QGazOwtUl7N75Q}{10.9.126.87}{10.9.126.87:9300} committed version [1] source [zen-disco-elected-as-master ([1] nodes joined)[{es-master-594b58b86c-lfpps}{wZQmXr5fSfWisCpOHBhaMg}{50jGPeKLSpO9RU_HhnVJCA}{10.9.124.81}{10.9.124.81:9300}]]]) [2018-10-21T07:41:55,162][INFO ][o.e.c.s.ClusterApplierService] [es-master-594b58b86c-bj7g7] added {{es-master-594b58b86c-9jkj2}{x9Prp1VbTq6_kALQVNwIWg}{7NHUSVpuS0mFDTXzAeKRcg}{10.9.125.81}{10.9.125.81:9300},}, reason: apply cluster state (from master [master {es-master-594b58b86c-bj7g7}{1aFT97hQQ7yiaBc2CYShBA}{Q3QzlaG3QGazOwtUl7N75Q}{10.9.126.87}{10.9.126.87:9300} committed version [3] source [zen-disco-node-join[{es-master-594b58b86c-9jkj2}{x9Prp1VbTq6_kALQVNwIWg}{7NHUSVpuS0mFDTXzAeKRcg}{10.9.125.81}{10.9.125.81:9300}]]]) [2018-10-21T07:48:02,485][INFO ][o.e.c.s.ClusterApplierService] [es-master-594b58b86c-bj7g7] added {{es-data-0}{SAOhUiLiRkazskZ_TC6EBQ}{qirmfVJBTjSBQtHZnz-QZw}{10.9.126.88}{10.9.126.88:9300},}, reason: apply cluster state (from master [master {es-master-594b58b86c-bj7g7}{1aFT97hQQ7yiaBc2CYShBA}{Q3QzlaG3QGazOwtUl7N75Q}{10.9.126.87}{10.9.126.87:9300} committed version [4] source [zen-disco-node-join[{es-data-0}{SAOhUiLiRkazskZ_TC6EBQ}{qirmfVJBTjSBQtHZnz-QZw}{10.9.126.88}{10.9.126.88:9300}]]]) [2018-10-21T07:48:21,984][INFO ][o.e.c.s.ClusterApplierService] [es-master-594b58b86c-bj7g7] added {{es-data-1}{fiv5Wh29TRWGPumm5ypJfA}{EXqKGSzIQquRyWRzxIOWhQ}{10.9.125.82}{10.9.125.82:9300},}, reason: apply cluster state (from master [master {es-master-594b58b86c-bj7g7}{1aFT97hQQ7yiaBc2CYShBA}{Q3QzlaG3QGazOwtUl7N75Q}{10.9.126.87}{10.9.126.87:9300} committed version [5] source [zen-disco-node-join[{es-data-1}{fiv5Wh29TRWGPumm5ypJfA}{EXqKGSzIQquRyWRzxIOWhQ}{10.9.125.82}{10.9.125.82:9300}]]]) [2018-10-21T07:50:51,245][INFO ][o.e.c.s.ClusterApplierService] [es-master-594b58b86c-bj7g7] added {{es-client-69b84b46d8-v5pj2}{MMjA_tlTS7ux-UW44i0osg}{rOE4nB_jSmaIQVDZCjP8Rg}{10.9.125.83}{10.9.125.83:9300},}, reason: apply cluster state (from master [master {es-master-594b58b86c-bj7g7}{1aFT97hQQ7yiaBc2CYShBA}{Q3QzlaG3QGazOwtUl7N75Q}{10.9.126.87}{10.9.126.87:9300} committed version [6] source [zen-disco-node-join[{es-client-69b84b46d8-v5pj2}{MMjA_tlTS7ux-UW44i0osg}{rOE4nB_jSmaIQVDZCjP8Rg}{10.9.125.83}{10.9.125.83:9300}]]])
The logs of the leading master pod clearly depict when each node gets added to the cluster. It is extremely useful in case of debugging issues.
2. Deploying Kibana and ES-HQ
Kibana is a simple tool to visualize ES-data and ES-HQ helps in the administration and monitoring of Elasticsearch clusters. For our Kibana and ES-HQ deployment we keep the following things in mind:
- We must provide the name of the ES-Cluster as an environment variable to the docker image.
- The service to access the Kibana/ES-HQ deployment is internal to our organisation only, i.e. No public IP is created. We will need to use a GCP Internal load balancer.
2.1 Kibana Deployment
We will use the following manifest to create Kibana Deployment and Service
apiVersion: apps/v1 kind: Deployment metadata: namespace: logging name: kibana labels: component: kibana spec: replicas: 1 selector: matchLabels: component: kibana template: metadata: labels: component: kibana spec: containers: - name: kibana image: docker.elastic.co/kibana/kibana-oss:6.2.2 env: - name: CLUSTER_NAME value: my-es - name: ELASTICSEARCH_URL value: http://elasticsearch.elasticsearch:9200 resources: limits: cpu: 200m requests: cpu: 100m ports: - containerPort: 5601 name: http --- apiVersion: v1 kind: Service metadata: namespace: logging name: kibana annotations: cloud.google.com/load-balancer-type: "Internal" labels: component: kibana spec: selector: component: kibana ports: - name: http port: 5601 type: LoadBalancer
2.2 ES-HQ Deployment
We will use the following manifest to create ES-HQ Deployment and Service
apiVersion: apps/v1beta1 kind: Deployment metadata: name: es-hq namespace: elasticsearch labels: component: elasticsearch role: hq spec: replicas: 1 template: metadata: labels: component: elasticsearch role: hq spec: containers: - name: es-hq image: elastichq/elasticsearch-hq:release-v3.4.0 env: - name: HQ_DEFAULT_URL value: http://elasticsearch:9200 resources: limits: cpu: 0.5 ports: - containerPort: 5000 name: http --- apiVersion: v1 kind: Service metadata: name: hq namespace: elasticsearch labels: component: elasticsearch role: hq spec: selector: component: elasticsearch role: hq ports: - name: http port: 5000 type: LoadBalancer
We can access both these services using the newly created Internal LoadBalancers.
Go to http://<External-Ip-Kibana-Service>/app/kibana#/home?_g=()
Go to http://<External-Ip-ES-Hq-Service>/#!/clusters/my-es
3. Conclusion
This concludes deploying ES backend for logging. The Elasticsearch we deployed can be used by other applications as well. The client nodes should scale automatically under high load and data nodes can be added by incrementing the replica count in the statefulset. We will also have to tweak a few env vars but it is fairly straightforward.
In the next blog we will learn about deploying Filebeat DaemonSet to send logs to the Elasticsearch backend.