Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
  1. Home
  2. Blog
  3. The most dangerous DDoS attacks of our time

The most dangerous DDoS attacks of our time

  • By Gcore
  • June 29, 2020
  • 7 min read
The most dangerous DDoS attacks of our time

As projects and organizations grow, they acquire new resources and, accordingly, they face new threats. Sometimes even small businesses become victims of cybercrime.

The reasons for attacking digital resources can vary from hunting for valuable data and access to intentionally damaging an organization’s reputation and finances. In any case, security should be the top priority.

Over the last few years, cloud infrastructure, and especially public clouds, has become very popular. Thousands of companies worldwide, from small businesses to massive giants, rely on cloud services.

Cyber threats can harm any online business if appropriate security measures aren’t in place.

Types of DDoS attacks

DDoS attacks (Distributed Denial of Service) are one of the most widespread cyber threats. Its goal is to literally deny service.

Such attacks disrupt the functioning of servers, websites, and web services by flooding them with an excessive amount of requests. Resources that aren’t designed for high loads then stop working, thus becoming unavailable to users. Also, DDoS attacks exploit vulnerabilities at the network protocol and application layers.

The term ‘distributed’, when applied to this type of attack, means that perpetrators covertly use entire networks of infected devices—botnets—as sources of attacks. Device owners often have no clue that attacks are performed from their computers and IP addresses. Devices within the Internet of Things (IoT) are especially suitable for such purposes because the number of them continues to grow while the protection they have remains quite weak.

Even though almost half of DDoS attacks is of a mixed nature, three main categories can be named.

Volumetric attacks

High volume attacks (i.e. flooding). This is the most widespread type. Perpetrators send a large number of requests to the server, and the resulting traffic blocks network bandwidth capacity.

The volume of such attacks can reach several terabits per second. As a result, unprepared infrastructures crash and stop processing requests.

Types of volumetric attacks:

  • DNS Amplification Multiple requests are sent to a public DNS server on behalf of the targeted resource (the target server IP address is indicated in the requests). Such requests require many responses that are redirected to the targeted server.
  • DNS Flood Requests to a DNS server from multiple IP addresses. It’s very difficult to detect malicious packets among all requests received by a server.
  • ICMP Flood ICMP packets don’t require confirmation of receipt, so it is extremely difficult to separate them from malicious traffic.
  • SYN Flood Sending an excessive number of requests to open new sessions in order to make the connection table run out of memory.

Protocol attacks

These attacks exploit vulnerabilities of such network protocols as TCP, UDP, and ICMP (Layers 3 and 4 of the OSI model). In this case, the purpose is to overload network capacity not with a giant amount of traffic but with pinpoint actions that exploit network defects.

Protocol attack example:

  • POD (Ping of Death) Pinging the server by sending malformed or oversized packets.

Application attacks

These are application layer attacks (Layer 7 of the OSI model). They are aimed at web servers and applications, such as a website’s CMS. The main purpose is to knock the web resource out of service. This can be done, in particular, by overloading the CPU or RAM.

This can be achieved with an external HTTP request. In response, the system starts processing a large number of internal requests it’s not designed for.

Types of application layer attacks:

  • Slowloris A bot opens many sessions on the server without responding to them, thereby provoking a timeout. As a result, such fake sessions consume server resources, leading to its unavailability.
  • HTTP Flood An excessive number of GET and POST requests are sent to the server to get the “heaviest” elements of the website.

The most dangerous DDoS attacks of our time

Due to the high effectiveness of some attacks, they are particularly popular among perpetrators. The most serious incidents of our time are related to DDoS attacks of a special type.

DNS Reflected Amplification

This subtype of Volumetric attacks is a combination of two malicious factors. First, the attacker simulates a request from the targeted server by putting its IP address into the request, ultimately using a public DNS server as a “reflector.” The DNS server receives the request indicating the targeted server and returns a response to it, thus “reflecting” the request.

A lot of data, not just the IP address of the domain, can be requested, which means the response of the DNS server can become many times larger. Finally, traffic can be maximized by querying through a botnet. Thus, it is highly likely that the bandwidth of the targeted server will be overloaded.

The most famous use of DNS Reflected Amplification was the attack on GitHub in February 2018, which is the largest known DDoS attack. It came from thousands of different autonomous systems and tens of thousands of unique endpoints. The attack reached 126.9 million packets per second at peak times. The traffic flow reached 1.35 Tbps, and the gain ratio (amplification ratio) reached 51,000.

Generated UDP Flood

Generated UDP Flood combines the generation of excess traffic and elements of protocol-layer attacks.

The attack sends UDP packets from fake IP addresses to a targeted IP address and server port. With a correctly-selected packet parameter and intensity of sending, it’s possible to simulate legitimate traffic. Identifying junk requests then becomes extremely difficult.

Such an attack was carried out against the Albion Online MMORPG server. As a solution to eliminate the threat, a Gcore software package combining various methods was selected:

  • Rate Limiting limitation on traffic
  • Regexp Filtering filtering packets that coincide with regexp in payload
  • Whitelisting adding authorized player IP addresses to a whitelist
  • Blacklisting adding unauthorized player IP addresses to a blacklist
  • IP Geolocation Filter blocking IP addresses based on geolocation
  • Gcore Challenge Response (CR) a unique protocol that is integrated on the client’s side and that allows IP address validation

How we protected Albion Online against complex and massive DDoS attacks

HTTP GET/POST Flood

This is a web application layer attack. In this case, a continuous stream of GET and POST requests is sent to the server, and at first glance, they seem legitimate. The problem is that the attacker does not wait for responses but instead sends requests constantly. As a result, server resources are exhausted in the course of processing them.

HTTP Flood was used at the very beginning to accurately determine the frequency of requests and the amount of traffic needed for denial of service. This method was used as an auxiliary one, and others were employed afterwards.

Hit-and-run

Hit-and-run is a subtype of volumetric attacks, but it works differently from the majority of other attacks. These are short bursts of traffic with a volume of hundreds of gigabits per second, sometimes lasting 20 to 60 minutes or even less than a minute. They are repeated many times over a long period—sometimes days or even weeks—at intervals averaging 1 to 2 days.

Such attacks gained popularity because they’re cheap. They are effective against protection solutions that are activated manually. The danger of Hit-and-run is that constant protection requires continuous monitoring and availability of response systems.

The main targets of hit-and-run attacks are online game servers and service providers.

SYN Flood

This is another example of a volumetric attack. A standard connection to the server via TCP is made by using the three “handshakes” method.

At the first stage, the client sends a packet with an SYN flag for synchronization. The server responds with an SYN-ACK packet notifying the client of the receipt of the first packet before offering to send a final, third packet to confirm the connection. The client doesn’t respond with the ACK packet, which allows the flood to continue and thereby overload server resources.

Some of the largest companies became targets of SYN Flood and similar types of attacks at different times, such as Amazon, SoftLayer (IBM), Korea Telecom, and others. One serious incident was the disabling of the Eurobet Italia SRL sports betting website in October 2019. Later that month, several financial and telecommunication companies in Italy, South Korea, and Turkey fell victim to TCP SYN-ACK Reflection.

Slowloris

This is an application layer DDoS attack subtype. Slowloris (or session attack) aims to “exhaust” the targeted server. The perpetrator opens many connections and keeps each one open for as long as possible until timeout occurs.

Such attacks aren’t easy to detect since the TCP connection is already established and the HTTP requests look legitimate. After some time, this tactic allows the attacker to take over all connections, thus blocking real users from accessing the server.

Slowloris became widely known during the Iran presidential election when attackers attempted to disable government websites.

How to set up reliable protection : 3 main steps

Cybersecurity is a narrow competency that can hardly be covered as easily as HR or accounting, no matter how advanced the company is. It’s important to ensure that your service and infrastructure providers are deeply immersed in cybersecurity issues and have established themselves as true professionals.

3 main steps for reliable protection:

  1. Use a tried and tested solution for continuous DDoS protection.
  2. Develop an action plan in case of an attack.
  3. Regularly run system health checks and eliminate application vulnerabilities.

A proven solution for continuous DDoS protection

When we consider cloud infrastructure security, special attention is required.

A server is one of the foundations for any web service, application, or site. If an attack leads to a loss of user access to resources, the consequences can be disastrous. There are financial and reputational risks, the potential compromising of confidential information, the destruction of valuable resources, and legal risks.

To keep your assets safe, it’s important to use proven online protection.

Protection should include the following elements:

  • Tools for continuous traffic monitoring and detection of suspicious activity
  • Adding IP addresses to blacklists and whitelists
  • Threat notification system
  • Attack neutralizing system

It’s especially important not to block user traffic along with malicious traffic when eliminating the threat.

A good example of effective fine tuning is Gcore’s DDoS Protection Service. This service is useful for any online business: media resources, game developers and publishers, telecom companies, insurance business, banks, and online stores.

Intelligent traffic filtering based on the analysis of statistical, signature, technical, and behavioral factors makes it possible to block even single malicious requests without affecting ordinary users.

An action plan in case of an attack

A response plan aims to limit the damage caused by a DDoS attack. It’s a clear sequence of actions and measures to be taken immediately as soon as a threat occurs.

A detailed action plan should include the following:

Regular system health checks and elimination of application vulnerabilities

To prevent a surprise DDoS attack and keep damage to a minimum, the protection mechanisms should be constantly improved. This rule applies not only to the tools designed to repel attacks, but also to the protected infrastructure and application.

Here’s a list of potential threats:

  • Authentication stage vulnerabilities
  • Malicious code insertions
  • Cross-site scripting
  • Encryption vulnerabilities
  • Logical errors, imperfect data structure

Scanning systems for vulnerabilities and constantly updating application code will help keep company resources resilient to most known cyber threats.

Protect your business

Gcore solutions for server and web application protection against DDoS attacks help online businesses all over the world stay available and keep their clients.

Contact us. Our specialists will explain why our technology is unique and they’ll help you configure effective and reliable protection.

Protect your business against DDoS attacks

Related articles

Introducing Gcore for Startups: created for builders, by builders

Building a startup is tough. Every decision about your infrastructure can make or break your speed to market and burn rate. Your time, team, and budget are stretched thin. That’s why you need a partner that helps you scale without compromise.At Gcore, we get it. We’ve been there ourselves, and we’ve helped thousands of engineering teams scale global applications under pressure.That’s why we created the Gcore Startups Program: to give early-stage founders the infrastructure, support, and pricing they actually need to launch and grow.At Gcore, we launched the Startups Program because we’ve been in their shoes. We know what it means to build under pressure, with limited resources, and big ambitions. We wanted to offer early-stage founders more than just short-term credits and fine print; our goal is to give them robust, long-term infrastructure they can rely on.Dmitry Maslennikov, Head of Gcore for StartupsWhat you get when you joinThe program is open to startups across industries, whether you’re building in fintech, AI, gaming, media, or something entirely new.Here’s what founders receive:Startup-friendly pricing on Gcore’s cloud and edge servicesCloud credits to help you get started without riskWhite-labeled dashboards to track usage across your team or customersPersonalized onboarding and migration supportGo-to-market resources to accelerate your launchYou also get direct access to all Gcore products, including Everywhere Inference, GPU Cloud, Managed Kubernetes, Object Storage, CDN, and security services. They’re available globally via our single, intuitive Gcore Customer Portal, and ready for your production workloads.When startups join the program, they get access to powerful cloud and edge infrastructure at startup-friendly pricing, personal migration support, white-labeled dashboards for tracking usage, and go-to-market resources. Everything we provide is tailored to the specific startup’s unique needs and designed to help them scale faster and smarter.Dmitry MaslennikovWhy startups are choosing GcoreWe understand that performance and flexibility are key for startups. From high-throughput AI inference to real-time media delivery, our infrastructure was designed to support demanding, distributed applications at scale.But what sets us apart is how we work with founders. We don’t force startups into rigid plans or abstract SLAs. We build with you 24/7, because we know your hustle isn’t a 9–5.One recent success story: an AI startup that migrated from a major hyperscaler told us they cut their inference costs by over 40%…and got actual human support for the first time. What truly sets us apart is our flexibility: we’re not a faceless hyperscaler. We tailor offers, support, and infrastructure to each startup’s stage and needs.Dmitry MaslennikovWe’re excited to support startups working on AI, machine learning, video, gaming, and real-time apps. Gcore for Startups is delivering serious value to founders in industries where performance, cost efficiency, and responsiveness make or break product experience.Ready to scale smarter?Apply today and get hands-on support from engineers who’ve been in your shoes. If you’re an early-stage startup with a working product and funding (pre-seed to Series A), we’ll review your application quickly and tailor infrastructure that matches your stage, stack, and goals.To get started, head on over to our Gcore for Startups page and book a demo.Discover Gcore for Startups

Outpacing cloud‑native threats: How to secure distributed workloads at scale

The cloud never stops. Neither do the threats.Every shift toward containers, microservices, and hybrid clouds creates new opportunities for innovation…and for attackers. Legacy security, built for static systems, crumbles under the speed, scale, and complexity of modern cloud-native environments.To survive, organizations need a new approach: one that’s dynamic, AI-driven, automated, and rooted in zero trust.In this article, we break down the hidden risks of cloud-native architectures and show how intelligent, automated security can outpace threats, protect distributed workloads, and power secure growth at scale.The challenges of cloud-native environmentsCloud-native architectures are designed for maximum flexibility and speed. Applications run in containers that can scale in seconds. Microservices split large applications into smaller, independent parts. Hybrid and multi-cloud deployments stretch workloads across public clouds, private clouds, and on-premises infrastructure.But this agility comes at a cost. It expands the attack surface dramatically, and traditional perimeter-based security can’t keep up.Containers share host resources, which means if one container is breached, attackers may gain access to others on the same system. Microservices rely heavily on APIs to communicate, and every exposed API is a potential attack vector. Hybrid cloud environments create inconsistent security controls across platforms, making gaps easier for attackers to exploit.Legacy security tools, built for unchanging, centralized environments, lack the real-time visibility, scalability, and automated response needed to secure today’s dynamic systems. Organizations must rethink cloud security from the ground up, prioritizing speed, automation, and continuous monitoring.Solution #1: AI-powered threat detection forsmarter defensesModern threats evolve faster than any manual security process can track. Rule-based defenses simply can’t adapt fast enough.The solution? AI-driven threat detection.Instead of relying on static rules, AI models monitor massive volumes of data in real time, spotting subtle anomalies that signal an attack before real damage is done. For example, an AI-based platform can detect an unauthorized process in a container trying to access confidential data, flag it as suspicious, and isolate the threat within milliseconds before attackers can move laterally or exfiltrate information.This proactive approach learns, adapts, and neutralizes new attack vectors before they become widespread. By continuously monitoring system behavior and automatically responding to abnormal activity, AI closes the gap between detection and action, critical in cloud-native, regulated environments where even milliseconds matter.Solution #2: Zero trust as the new security baseline“Trust but verify” no longer cuts it. In a cloud-native world, the new rule is “trust nothing, verify everything”.Zero-trust security assumes that threats exist both inside and outside the network perimeter. Every request—whether from a user, device, or application—must be authenticated, authorized, and validated.In distributed architectures, zero trust isolates workloads, meaning even if attackers breach one component, they can’t easily pivot across systems. Strict identity and access management controls limit the blast radius, minimizing potential damage.Combined with AI-driven monitoring, zero trust provides deep, continuous verification, blocking insider threats, compromised credentials, and advanced persistent threats before they escalate.Solution #3: Automated security policies for scalingprotectionManual security management is impossible in dynamic environments where thousands of containers and microservices are spun up and down in real time.Automation is the way forward. AI-powered security policies can continuously analyze system behavior, detect deviations, and adjust defenses automatically, without human intervention.This eliminates the lag between detection and response, shrinks the attack window, and drastically reduces the risk of human error. It also ensures consistent security enforcement across all environments: public cloud, private cloud, and on-premises.For example, if a system detects an unusual spike in API calls, an automated security policy can immediately apply rate limiting or restrict access, shutting down the threat without impacting overall performance.Automation doesn’t just respond faster. It maintains resilience and operational continuity even in the face of complex, distributed threats.Unifying security across cloud environmentsSecuring distributed workloads isn’t just about having smarter tools, it’s about making them work together. Different cloud platforms, technologies, and management protocols create fragmentation, opening cracks that attackers can exploit. Security gaps between systems are as dangerous as the threats themselves.Modern cloud-native security demands a unified approach. Organizations need centralized platforms that pull real-time data from every endpoint, regardless of platform or location, and present it through a single management dashboard. This gives IT and security teams full, end-to-end visibility over threats, system health, and compliance posture. It also allows security policies to be deployed, updated, and enforced consistently across every environment, without relying on multiple, siloed tools.Unification strengthens security, simplifies operations, and dramatically reduces overhead, critical for scaling securely at cloud-native speeds. That’s why at Gcore, our integrated suite of products includes security for cloud, network, and AI workloads, all managed in a single, intuitive interface.Why choose Gcore for cloud-native security?Securing cloud-native workloads requires more than legacy firewalls and patchwork solutions. It demands dynamic, intelligent protection that moves as fast as your business does.Gcore Edge Security delivers robust, AI-driven security built for the cloud-native era. By combining real-time AI threat detection, zero-trust enforcement, automated responses, and compliance-first design, Gcore security solutions protect distributed applications without slowing down development cycles.Discover why WAAP is essential for cloud security in 2025

How to comply with NIS2: practical tips and key requirements

The European Union is boosting cybersecurity legislation with the introduction of the NIS2 Directive. The new rules represent a significant expansion in how organizations across the continent approach digital security. NIS2 establishes specific and clear expectations that impact not just technology departments but also legal teams and top decision-makers. It refines old protocols while introducing additional obligations that companies must meet to operate within the EU.In this article, we explain the role and scope of the NIS2 Directive, break down its key security requirements, analyze the anticipated business impact, and provide a checklist of actions that businesses can take to remain in compliance with continually evolving regulatory demands.Who needs to comply with NIS2?The NIS2 Directive applies to essential and important organizations operating within the European Union in sectors deemed critical to society and the economy. NIS2 also applies to non-EU companies offering services within the EU, requiring non-EU companies that offer covered services in the EU without a local establishment to appoint a representative in one of the member states where they operate.In general, organizations with 50 or more employees and an annual turnover above €10M fall under NIS2. Smaller entities can also be included if they provide key services, including energy, transport, banking, healthcare, water supply, digital infrastructure, and public administration.4 key security requirements of NIS2Under the NIS2 Directive, organizations are required to have an integrated approach to cybersecurity. There are 10 basic measures that companies subject to this legislation must follow: risk policies, incident handling, supply-chain security, MFA, cryptography, backups, BCP/DRP, vulnerability management, security awareness, crypto-control, and “informational hygiene”. In this article, we will cover the four most important of them.These four are necessary steps for limiting disruptions and achieving full compliance with stringent regulatory demands. They include incident response, risk management, corporate accountability, and reporting obligations.#1 Incident responseUnder NIS2, a solid incident response is required. Companies must document processes for the detection, analysis, and management of cyber incidents. Additionally, organizations must have a trained team ready to respond quickly when there's a breach, reducing damage and downtime. Having the right plan in place can make the difference between a minor issue and a major disruption.#2 Risk managementContinuous risk evaluation is paramount within NIS2. Businesses should constantly be scouting out internal vulnerabilities and external dangers while following a clear, defined risk management protocol. Regular audits and monitoring help businesses stay a step ahead of future threats.#3 Corporate accountabilityNIS2 emphasizes corporate accountability by requiring clear cybersecurity responsibilities across all management levels, placing direct oversight on executive leadership. Additionally, due to the dependency of most organizations on third-party suppliers, supply chain security is paramount. Executives need to check the security measures of their partners. One weak link in the chain can destroy the entire system, making stringent security measures a prerequisite for all partners to reduce risks.#4 Reporting obligationsTransparency lies at the heart of NIS2. Serious incidents need to be reported promptly to maintain the culture of accountability the directive encourages. Good reporting mechanisms ensure that vital information is delivered to the concerned authorities in a timely manner, akin to formal channels in data protection legislation such as the GDPR.What NIS2 means for applicable organizationsSome of the potential implications of NIS2 include an increased regulatory burden, financial and reputational risks, and operational challenges. These apply to all businesses that are already established in the European Union. With compliance now becoming mandatory in all member states, businesses that have lagged behind in implementing effective cybersecurity measures will be put under increased pressure to improve their processes and systems.Increased regulatory burdenFor most firms, the new directive means a huge increase in their regulatory burden. The broadened scope of the directive applies to more industries, and this may lead to additional administrative tasks. Legal personnel and compliance officers will need to sift through current cybersecurity policies and ensure all parts of the organization are in line with the new requirements. This exercise can entail considerable coordination between different departments, including IT, risk management, and supply chain management.Financial and reputational risksThe penalty for non-compliance is steep. The fines for failure to comply with the NIS2 Directive are comparable to the GDPR fines for non-compliance, up to €10 million or 2% of a company's worldwide annual turnover for critical entities, while important organizations face a fine of up to €7M or 1.4% of their global annual turnover. Financial fines and reputational damage are significant risks that organizations must take into account. A single cybersecurity incident can lead to costly investigations, legal battles, and a loss of trust among customers and partners. For companies that depend on digital infrastructure for their day-to-day operations, the cost of non-compliance can be crippling.Operational challengesNIS2 compliance requires more than administrative change. Firms may have to make investments into new technology when trying to meet the directive's requirements, such as expanded monitoring, expanded protection of data, and sophisticated incident response protocols. Legacy system firms can be put at a disadvantage with the need for rapid cybersecurity improvements.NIS2 compliance checklistDue to the comprehensive nature of the NIS2 Directive, organizations will need to adopt a systematic compliance strategy. Here are 5 practical steps organizations can take to comply:Start with a thorough audit. Organizations must review their current cybersecurity infrastructure and identify areas of vulnerability. This kind of audit helps reveal areas of weakness and makes it easier to decide where to invest funds in new tools and training employees.Develop a realistic incident response plan. It is essential to have a short, actionable plan in place when things inevitably go wrong. Organizations need to develop step-by-step procedures for handling breaches and rehearse them through regular training exercises. The plan needs to be constantly updated as new lessons are learned and industry practices evolve.Sustain continued risk management. Risk management is not a static activity. Organizations need to keep their systems safe at all times and update risk analyses from time to time to combat new issues. This allows for timely adjustments to their approach.Check supply chain security. Organizations need to find out how secure their third-party vendors are. They need to have clear-cut security standards and check periodically to help ensure that all members of the supply chain adhere to those standards.Establish clear reporting channels. Organizations must have easy ways of communicating with regulators. They must establish proper reporting schedules and maintain good records. Training reporting groups to report issues early can avoid delays and penalties.Partner with Gcore for NIS2 successGcore’s integrated platform helps organizations address key security concerns relevant to NIS2 and reduce cybersecurity risk:WAAP: Real-time bot mitigation, API protection, and DDoS defense support incident response and ongoing threat monitoring.Edge Cloud: Hosted in ISO 27001 and PCI DSS-compliant EU data centers, offering scalable, resilient infrastructure that aligns with NIS2’s focus on operational resilience and data protection.CDN: Provides fast, secure content delivery while improving redundancy and reducing exposure to availability-related disruptions.Integrated ecosystem: Offers unified visibility across services to strengthen risk management and simplify compliance.Our infrastructure emphasizes data and infrastructure sovereignty, critical for EU-based companies subject to local and cross-border data regulation. With fully-owned data centers across Europe and no reliance on third-party hyperscalers, Gcore enables businesses to maintain full control over where and how their data is processed.Explore our secure infrastructure overview to learn how Gcore’s ecosystem can support your NIS2 compliance journey with continuous monitoring and threat mitigation.Please note that while Gcore’s services support many of the directive’s core pillars, they do not in themselves guarantee full compliance.Ready to get compliant?NIS2 compliance doesn’t have to be overwhelming. We offer tailored solutions to help businesses strengthen their security posture, align with key requirements, and prepare for audits.Interested in expert guidance? Get in touch for a free consultation on compliance planning and implementation. We’ll help you build a roadmap based on your current security posture, business needs, and regulatory deadlines.Get a free NIS2 consultation

Securing vibe coding: balancing speed with cybersecurity

Vibe coding has emerged as a cultural phenomenon in 2025 software development. It’s a style defined by coding on instinct and moving fast, often with the help of AI, rather than following rigid plans. It lets developers skip exhaustive design phases and dive straight into building, writing code (or prompting an AI to write it) in a rapid, conversational loop. It has caught on fast and boasts a dedicated following of developers hosting vibe coding game jams.So why all the buzz? For one, vibe coding delivers speed and spontaneity. Enthusiasts say it frees them to prototype at the speed of thought, without overthinking architecture. A working feature can be blinked into existence after a few AI-assisted prompts, which is intoxicating for startups chasing product-market fit. But as with any trend that favors speed over process, there’s a flip side.This article explores the benefits of vibe coding and the cybersecurity risks it introduces, examines real incidents where "just ship it" coding backfired, and outlines how security leaders can keep up without slowing innovation.The upside: innovation at breakneck speedVibe coding addresses real development needs and has major benefits:Allows lightning-fast prototyping with AI assistance. Speed is a major advantage, especially for startups, and allows faster validation of ideas and product-market fit.Prioritizes creativity over perfection, rewarding flow and iteration over perfection.Lowers barriers to entry for non-experts. AI tooling lowers the skill floor, letting more people code.Produces real success stories, like a game built via vibe coding hitting $1M ARR in 17 days.Vibe coding aligns well with lean, agile, and continuous delivery environments by removing overhead and empowering rapid iteration.When speed bites backVibe coding isn’t inherently insecure, but the culture of speed it promotes can lead to critical oversights, especially when paired with AI tooling and lax process discipline. The following real-world incidents aren’t all examples of vibe coding per se, but they illustrate the kinds of risks that arise when developers prioritize velocity over security, skip reviews, or lean too heavily on AI without safeguards. These three cases show how fast-moving or under-documented development practices can open serious vulnerabilities.xAI API key leak (2025)A developer at Elon Musk’s AI company, xAI, accidentally committed internal API keys to a public GitHub repo. These keys provided access to proprietary LLMs trained on Tesla and SpaceX data. The leak went undetected for two months, exposing critical intellectual property until a researcher reported it. The error likely stemmed from fast-moving development where secrets were hardcoded for convenience.Malicious NPM packages (2024)In January 2024, attackers uploaded npm packages like warbeast2000 and kodiak2k, which exfiltrated SSH keys from developer machines. These were downloaded over 1,600 times before detection. Developers, trusting AI suggestions or searching hastily for functionality, unknowingly included these malicious libraries.OpenAI API key abuse via Replit (2024)Hackers scraped thousands of OpenAI API keys from public Replit projects, which developers had left in plaintext. These keys were abused to access GPT-4 for free, racking up massive bills for unsuspecting users. This incident shows how projects with weak secret hygiene, which is a risk of vibe coding, become easy targets.Securing the vibe: smart risk mitigationCybersecurity teams can enable innovation without compromising safety by following a few simple cybersecurity best practices. While these don’t offer 100% security, they do mitigate many of the major vulnerabilities of vibe coding.Integrate scanning tools: Use SAST, SCA, and secret scanners in CI/CD. Supplement with AI-based code analyzers to assess LLM-generated code.Shift security left: Embed secure-by-default templates and dev-friendly checklists. Make secure SDKs and CLI wrappers easily available.Use guardrails, not gates: Enable runtime protections like WAF, bot filtering, DDoS defense, and rate limiting. Leverage progressive delivery to limit blast radius.Educate, don’t block: Provide lightweight, modular security learning paths for developers. Encourage experimentation in secure sandboxes with audit trails.Consult security experts: Consider outsourcing your cybersecurity to an expert like Gcore to keep your app or AI safe.Secure innovation sustainably with GcoreVibe coding is here to stay, and for good reason. It unlocks creativity and accelerates delivery. But it also invites mistakes that attackers can exploit. Rather than fight the vibe, cybersecurity leaders must adapt: automating protections, partnering with devs, and building a culture where shipping fast doesn't mean shipping insecure.Want to secure your edge-built AI or fast-moving app infrastructure? Gcore’s Edge Security platform offers robust, low-latency protection with next-gen WAAP and DDoS mitigation to help you innovate confidently, even at speed. As AI and security experts, we understand the risks and rewards of vibe coding, and we’re ideally positioned to help you secure your workloads without slowing down development.Into vibe coding? Talk to us about how to keep it secure.

How AI is improving L7 DDoS protection solutions

How AI is improving L7 DDoS protection solutionsDDoS attacks have always been a concern for organizations, but with the recent rise of AI and machine learning, the threat has grown. Layer 7 attacks are particularly damaging, as they focus on the application layer that users utilize to interact with your system. Unlike traditional DDoS attacks, which aim to overwhelm the servers with sheer traffic, these advanced threats imitate real user behavior, making it incredibly difficult for defenses to identify and block malicious traffic.While this challenge is complex, it is far from insurmountable. In this situation, the mantra "fight fire with fire" really applies. By using machine learning and AI against AI-based attacks, organizations can then retaliate with equally advanced Layer 7 protection. These newer technologies can offer something beyond what more traditional techniques could hope to achieve, including significantly faster response times, smarter threat detection, and precision. Here’s how AI and ML are redefining how businesses stay online and secure.Why L7 DDoS attacks are dangerous and hard to stopL7 DDoS attacks are sneaky. Unlike network-based attacks that flood your bandwidth, these attacks go after your application logic. Picture thousands of fake users trying to log in, search for products, or complete transactions all at once. Your systems become overwhelmed, not because they’re receiving a massive amount of data, but because they’re handling what looks like genuine traffic.The big challenge is filtering out the bad traffic while letting legitimate users through. After all, if you accidentally block real customers, you’re essentially doing the attackers’ job for them.Manual defenses used in the past, such as rate limiting with static thresholds, can result in a lose-lose situation. When the threshold is set too high, attackers can enter, often in place of traditional users. If the threshold is set too low, legitimate users are left unable to access the application. This acts as a collective punishment, blocking users out of fear of a few malicious actors rather than an accurate solution that can identify the malicious activity and block it without compromising users’ experience. Traditional defenses, based on static rules or human intervention, simply cannot scale at the speed and intricacy of a modern attack. They’re reactive when they need to be proactive.Filtering traffic without blocking customersAI and ML avoid the pitfalls of traditional security systems by continuously analyzing traffic and identifying anomalies dynamically. One of the biggest pain points in DDoS defense is false positives, which block legitimate users because their behavior looks suspicious.Traditional solutions relying on static rules simply block any IPs displaying suspicious behavior, while AI and ML track the activity of IPs over time, building a detailed profile of legitimate traffic. Sometimes referred to as IP profiling, this process groups together the IP addresses that interact predictably and legitimately with your systems. By analyzing both current and historical data, these systems can differentiate suspicious IPs from legitimate users. In the event of an attack, “safe” IPs are automatically allowed through, while suspicious ones are challenged or blocked.These AI systems learn over time from previous attacks they’ve encountered, adapting for greater accuracy without any manual updating or intervention to counter-changing tactics. This allows the systems to correlate current traffic with historical profiles and continuously reassess the safety of certain profiles. This ensures that legitimate accounts can continue to access services unimpeded while malicious traffic is contained.Traditional systems cannot achieve this level of precision, and instead tend to shut down applications during attacks, essentially allowing the attackers to win. With advanced AI and ML based defenses, businesses can maintain their service undisturbed for real users, even during an attack.Fighting AI attacks with AI defensesDDoS attacks are becoming increasingly adaptive, using AI to mimic real users, leaving the static rules in traditional solutions unable to identify the subtle signs of attack traffic. Attackers constantly change their methods to avoid fixed security rules. Manually updating defenses each time a new attack method pops up is time-consuming and inefficient.AI-powered solutions overcome this limitation by using the same strategy as attackers, continuously learning from data input to adapt to increasingly convincing DDoS traffic in real time. This can stop even zero-day and self-evolving AI cyberattacks.Staying Ahead of Attackers With Smarter DefensesOur AI-driven WAAP solution delivers intelligent, interconnected protection, enabling businesses to stay ahead of even the most advanced and evolving threats, including L7 DDoS attacks. By leveraging deep traffic analysis, heuristic tagging, and adaptive learning, it provides a proactive defense strategy. With cross-domain capabilities and actionable security insights, Gcore WAAP is an essential asset for security architects and key decision-makers, seamlessly blending innovation with practicality to meet the demands of today’s digital landscape.Interested in exploring WAAP further? Download our ebook to discover cybersecurity best practices, the most prevalent threats, and how WAAP can protect your business’s digital infrastructure. Or, reach out to our team to learn more about Gcore WAAP.Discover why WAAP is a must-have for modern businesses—get your free ebook

Introducing Super Transit for outstanding DDoS protection performance

We understand that security and performance for your online services are non-negotiables. That’s why we’re introducing Super Transit, a cutting-edge DDoS protection and acceleration feature designed to safeguard your infrastructure while delivering lightning-fast connectivity. Read on to discover the benefits of Super Transit, who can benefit from the feature, and how it works.DDoS mitigation meets exceptional network performanceSuper Transit intelligently routes your traffic via Gcore’s 180 point-of-presence global network, proactively detecting, mitigating, and filtering DDoS attacks. When an attack occurs, your customers don’t notice any difference: Their connection remains stable and secure. Plus, they get an enhanced end-user experience, as the delay between the end user and the server is significantly reduced, cutting down latency.“Super Transit allows for fast, worldwide access to our DDoS protection services,” explains Andrey Slastenov, Head of Security at Gcore. “This is particularly important for real-time services such as online gaming and video streaming, where delay can significantly impact user experience.”Who needs Super Transit?Super Transit is designed for enterprises that require both high-performance connectivity and strong DDoS protection. Here’s how it helps different roles in your organization:CISOs and security teams: Reduce risks and help ensure compliance by integrating seamless DDoS protection into your network.CTOs and IT leaders: Optimize traffic performance and maintain uninterrupted business operations.Network engineers and security architects: Simplify security management with API, automated attack mitigation, and secure GRE tunneling.How Super Transit worksSuper Transit optimizes performance and security by performing four steps.Traffic diversion: Incoming traffic is automatically routed through Gcore’s global anycast network, where it undergoes real-time analysis. Malicious traffic is blocked before it can reach your infrastructure.Threat detection and mitigation: Using advanced filtering, Super Transit identifies and neutralizes DDoS attacks.Performance optimization: Legitimate requests are routed through the optimal path within Gcore’s high-performance backbone, minimizing latency and maximizing speed.Secure tunneling to your network: Traffic is securely forwarded to your origin via stable tunneling protocols, providing a smooth, uninterrupted, and secure connection.Get Super Transit today for high-performance securitySuper Transit is available now to all Gcore customers. To get started, get in touch with our security experts who’ll guide you through how to get Super Transit up and running. You can also explore our product documentation, which provides a clear and simple guide to configuring the feature.Our innovations are driven by cutting-edge research, enabling us to stay one step ahead of attackers. We release the latest DDoS attack trends twice yearly, so you can make informed decisions about your security needs. Get the H1 2024 report free.Discover the latest DDoS attack trends with Gcore Radar

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.