- Home
- Developers
- How to check your web resource for vulnerabilities
Table of contents
- What a pen test is
- How pen test is conducted
- What you get as a pen test result
- A few more words about Gcore’s pen test
- Summary
Try Gcore Security
Try for freeIn 2021, the number of cyberattacks on every company increased worldwide by 40%. Protecting your resources against malicious users is getting more and more difficult.
Even the most secure infrastructure may have some vulnerabilities that threaten your company. How can you make sure that you have covered all possible threats and that your resources are securely protected?
To achieve this, you can do a pen test, i.e., a specially designed penetration test. We’ll explain what it is based on the example of our service.
What a pen test is
A pen test implies testing your infrastructure and applications for malicious penetration opportunities. The test consists in simulating a malicious attack, checking how deeply attackers can penetrate into your system, and calculating how much damage they can cause to your company.
The pen test is conducted from the attacker’s position. As a result, the vulnerabilities of your infrastructure and applications are identified. We check how dangerous they are and give recommendations on the ways to eliminate them.
You can test your application, the entire IT infrastructure, or its individual elements: databases, various network services (for example, email), network equipment, applied software, or user and server operating systems.
How pen test is conducted
There are different testing methodologies. The Gcore’s pen test is based on two techniques:
- OWASP Web Security Testing Guide is the main methodology for testing the security of web applications. It was developed by the international OWASP consortium. It is a complex web resource testing guide that has incorporated the best practices of the world’s pen testers.
- Penetration Testing Execution Standard contains basic testing recommendations. Special attention is paid to determining the pen test’s goals and objectives correctly depending on the characteristics of the resource to be tested.
The test involves 5 stages:
- Infrastructure research. Experts analyze your systems, collect maximum information about malicious users’ potential goals, and analyze the collected data.
- Threat modeling. Based on the data obtained, possible attacks are simulated. Two possible scenarios are taken into consideration: an external penetration and the actions of the company’s employees having access rights.
- Vulnerability analysis. Specialists look for the flaws in your systems, such as potential entry points and attack vectors, and select appropriate hacking tools and methods.
- Exploitation. Experts imitate attacks, while bringing the simulation as close to real conditions as possible and trying to outmaneuver the security system.
- Post-exploitation. Experts calculate financial losses caused by the attack and the costs of eliminating the consequences.
What you get as a pen test result
After the pen test, you will receive a report containing recommendations on how to fix the vulnerabilities revealed.
For example, our pen test report includes:
- summary and a full testing checklist;
- methodology description;
- current possible security threats;
- detailed description of the vulnerabilities detected;
- recommendations on how to eliminate them and enhance the security of your infrastructure.
The vulnerabilities list includes a CVSS assessment (Common Vulnerability Scoring System), attacks scenarios, and their possible consequences.
This means that we will explain to you in detail which security problems we have found, which consequences they can lead to, and how to avoid it.
A few more words about Gcore’s pen test
Our pen test service has been launched only recently, but we have a lot of experience in solving security issues.
We have our own WAF (Web Application Firewall) that protects our clients’ web applications against cyberattacks. Our servers are protected against DDoS attacks at layers L3, L4, and L7. We have managed to repel quite a number of threats and we know how malicious users act. This means that we are capable of simulating their actions and checking all your systems in detail.
Summary
- Pen test is a new service provided by Gcore. It implies testing your applications and infrastructure for vulnerabilities. The test is carried out in the form of simulating malicious users’ real attacks.
- Our pen test involves 5 stages: analyzing your infrastructure, simulating possible threats, looking for vulnerabilities that can be exploited, imitating an attack, and determining its consequences.
- After the pen test, you receive a detailed report containing a description of the methodology used, the information about the vulnerabilities found, and the consequences of their exploitation. We also give you recommendations on how to eliminate your system’s weaknesses and enhance its security.
- Gcore has an extensive experience in repelling cyberattacks. We know how malicious users work and we are capable of revealing all the weaknesses of your system.
Table of contents
- What a pen test is
- How pen test is conducted
- What you get as a pen test result
- A few more words about Gcore’s pen test
- Summary
Try Gcore Security
Try for freeRelated articles

3 underestimated security risks of AI workloads and how to overcome them
Artificial intelligence workloads introduce a fundamentally different security landscape for engineering and security teams. Unlike traditional applications, AI systems must protect not just endpoints and networks, but also training data pipelines, feature stores, model repositories, and inference APIs. Each phase of the AI life cycle presents distinct attack vectors that adversaries can exploit to corrupt model behavior, extract proprietary logic, or manipulate downstream outputs.In this article, we uncover three security vulnerabilities of AI workloads and explain how developers and MLOps teams can overcome them. We also look at how investing in your AI security can save time and money, explore the challenges that lie ahead for AI security, and offer a simplified way to protect your AI workloads with Gcore.Risk #1: data poisoningData poisoning is a targeted attack on the integrity of AI systems, where malicious actors subtly inject corrupted or manipulated data into training pipelines. The result is a model that behaves unpredictably, generates biased or false outputs, or embeds hidden logic that can be triggered post-deployment. This can undermine business-critical applications—from fraud detection and medical diagnostics to content moderation and autonomous decision-making.For developers, the stakes are high: poisoned models are hard to detect once deployed, and even small perturbations in training data can have system-wide consequences. Luckily, you can take a few steps to mitigate against data poisoning and then implement zero-trust AI to further protect your workloads.Mitigation and hardeningRestrict dataset access using IAM, RBAC, or identity-aware proxies.Store all datasets in versioned, signed, and hashed formats.Validate datasets with automated schema checks, label distribution scans, and statistical outlier detection before training.Track data provenance with metadata logs and checksums.Block training runs if datasets fail predefined data quality gates.Integrate data validation scripts into CI/CD pipelines pre-training.Enforce zero-trust access policies for data ingestion services.Solution integration: zero-trust AIImplement continuous authentication and authorization for each component interacting with data (e.g., preprocessing scripts, training jobs).Enable real-time threat detection during training using runtime security tools.Automate incident response triggers for unexpected file access or data source changes.Risk #2: adversarial attacksAdversarial attacks manipulate model inputs in subtle ways that trick AI systems into making incorrect or dangerous decisions. These perturbations—often imperceptible to humans—can cause models to misclassify images, misinterpret speech, or misread sensor data. In high-stakes environments like facial recognition, autonomous vehicles, or fraud detection, these failures can result in security breaches, legal liabilities, or physical harm.For developers, the threat is real: even state-of-the-art models can be easily fooled without adversarial hardening. The good news? You can make your models more robust by combining defensive training techniques, input sanitization, and secure API practices. While encrypted inference doesn’t directly block adversarial manipulation, it ensures that sensitive inference data stays protected even if attackers attempt to probe the system.Mitigation and hardeningUse adversarial training frameworks like CleverHans or IBM ART to expose models to perturbed inputs during training.Apply input sanitization layers (e.g., JPEG re-encoding, blurring, or noise filters) before data reaches the model.Implement rate limiting and authentication on inference APIs to block automated adversarial probing.Use model ensembles or randomized smoothing to improve resilience to small input perturbations.Log and analyze input-output patterns to detect high-variance or abnormal responses.Test models regularly against known attack vectors using robustness evaluation tools.Solution integration: encrypted inferenceWhile encryption doesn't prevent adversarial inputs, it does mean that input data and model responses remain confidential and protected from observation or tampering during inference.Run inference in trusted environments like Intel SGX or AWS Nitro Enclaves to protect model and data integrity.Use homomorphic encryption or SMPC to process encrypted data without exposing sensitive input.Ensure that all intermediate and output data is encrypted at rest and in transit.Deploy access policies that restrict inference to verified users and approved applications.Risk #3: model leakage of intellectual assetsModel leakage—or model extraction—happens when an attacker interacts with a deployed model in ways that allow them to reverse-engineer its structure, logic, or parameters. Once leaked, a model can be cloned, monetized, or used to bypass the very defenses it was meant to enforce. For businesses, this means losing competitive IP, compromising user privacy, or enabling downstream attacks.For developers and MLOps teams, the challenge is securing deployed models in a way that balances performance and privacy. If you're exposing inference APIs, you’re exposing potential entry points—but with the right controls and architecture, you can drastically reduce the risk of model theft.Mitigation and hardeningEnforce rate limits and usage quotas on all inference endpoints.Monitor for suspicious or repeated queries that indicate model extraction attempts.Implement model watermarking or fingerprinting to trace unauthorized model use.Obfuscate models before deployment using quantization, pruning, or graph rewriting.Disable or tightly control any model export functionality in your platform.Sign and verify inference requests and responses to ensure authenticity.Integrate security checks into CI/CD pipelines to detect risky configurations—such as public model endpoints, export-enabled containers, or missing inference authentication—before they reach production.Solution integration: native security integrationIntegrate model validation, packaging, and signing into CI/CD pipelines.Serve models from encrypted containers or TEEs, with minimal runtime exposure.Use container and image scanning tools to catch misconfigurations before deployment.Centralize monitoring and protection with tools like Gcore WAAP for real-time anomaly detection and automated response.How investing in AI security can save your business moneyFrom a financial point of view, the use of AI and machine learning in cybersecurity can lead to massive cost savings. Organizations that utilize AI and automation in cybersecurity have saved an average of $2.22 million per data breach compared to organizations that do not have these protections in place. This is because the necessity for manual oversight is reduced, lowering the total cost of ownership, and averting costly security breaches. The initial investment in advanced security technologies yields returns through decreased downtime, fewer false positives, and an enhanced overall security posture.Challenges aheadWhile securing the AI lifecycle is essential, it’s still difficult to balance robust security with a positive user experience. Rigid scrutiny can add additional latency or false positives that can stop operations, but AI-powered security can avoid such incidents.Another concern organizations must contend with is how to maintain current AI models. With threats changing so rapidly, today's newest model could easily become outdated by tomorrow’s. Solutions must have an ongoing learning ability so that security detection parameters can be revised.Operational maturity is also a concern, especially for companies that operate in multiple geographies. Well-thought-out strategies and sound governance processes must accompany the integration of complex AI/ML tools with existing infrastructure, but automation still offers the most benefits by reducing the overhead on security teams and helping ensure consistent deployment of security policies.Get ahead of AI security with GcoreAI workloads introduce new and often overlooked security risks that can compromise data integrity, model behavior, and intellectual property. By implementing practices like zero-trust architecture, encrypted inference, and native security integration, developers can build more resilient and trustworthy AI systems. As threats evolve, staying ahead means embedding security at every phase of the AI lifecycle.Gcore helps teams apply these principles at scale, offering native support for zero-trust AI, encrypted inference, and intelligent API protection. As an experienced AI and security solutions provider, our DDoS Protection and AI-enabled WAAP solutions integrate natively with Everywhere Inference and GPU Cloud across 210+ global points of presence. That means low latency, high performance, and proven, robust security, no matter where your customers are located.Talk with our AI security experts and secure your workloads today

Flexible DDoS mitigation with BGP Flowspec
For customers who understand their own network traffic patterns, rigid DDoS protection can be more of a limitation than a safeguard. That’s why Gcore supports BGP Flowspec: a flexible, standards-based method for defining granular filters that block or rate-limit malicious traffic in real time…before it reaches your infrastructure.In this article, we’ll walk through:What Flowspec is and how it worksThe specific filters and actions Gcore supportsCommon use cases, with example rule definitionsHow to activate and monitor Flowspec in your environmentWhat is the BGP Flowspec?BGP Flowspec (RFC 8955) extends Border Gateway Protocol to distribute traffic filtering rules alongside routing updates. Instead of static ACLs or reactive blackholing, Flowspec enables near-instantaneous propagation of mitigation rules across networks.BGP tells routers how to reach IP prefixes across the internet. With Flowspec, those same BGP announcements can now carry rules, not just routes. Each rule describes a pattern of traffic (e.g., TCP SYN packets >1000 bytes from a specific subnet) and what action to take (drop, rate-limit, mark, or redirect).What are the benefits of the BGP Flowspec?Most traditional DDoS protection services react to threats after they start, whether by blackholing traffic to a target IP, redirecting flows to a scrubbing center, or applying rigid, static filters. These approaches can block legitimate traffic, introduce latency, or be too slow to respond to fast-evolving attacks.Flowspec offers a more flexible alternative.Proactive mitigation: Instead of waiting for attacks, you can define known-bad traffic patterns ahead of time and block them instantly. Flowspec lets experienced operators prevent incidents before they start.Granular filtering: You’re not limited to blocking by IP or port. With Flowspec, you can match on packet size, TCP flags, ICMP codes, and more, enabling fine-tuned control that traditional ACLs or RTBH don’t support.Edge offloading: Filtering happens directly on Gcore’s routers, offloading your infrastructure and avoiding scrubbing latency.Real-time updates: Changes to rules are distributed across the network via BGP and take effect immediately, faster than manual intervention or standard blackholing.You still have the option to block traffic during an active attack, but with Flowspec, you gain the flexibility to protect services with minimal disruption and greater precision than conventional tools allow.Which parts of the Flowspec does Gcore implement?Gcore supports twelve filter types and four actions of the Flowspec.Supported filter typesGcore supports all 12 standard Flowspec match components.Filter FieldDescriptionDestination prefixTarget subnet (usually your service or app)Source prefixSource of traffic (e.g., attacker IP range)IP protocolTCP, UDP, ICMP, etc.Port / Source portMatch specific client or server portsDestination portMatch destination-side service portsICMP type/codeFilter echo requests, errors, etc.TCP flagsFilter packets by SYN, ACK, RST, FIN, combinationsPacket lengthFilter based on payload sizeDSCPQuality of service code pointFragmentMatch on packet fragmentation characteristicsSupported actionsGcore DDoS Protection supports the following Flowspec actions, which can be triggered when traffic matches a specific filter:ActionDescriptionTraffic-rate (0x8006)Throttle/rate limit traffic by byte-per-second rateredirectRedirect traffic to alternate location (e.g., scrubbing)traffic-markingApply DSCP marks for downstream classificationno-action (drop)Drop packets (rate-limit 0)Rule orderingRFC 5575 defines the implicit order of Flowspec rules. The crucial point is that more specific announcements take preference, not the order in which the rules are propagated.Gcore also respects Flowspec rule ordering per RFC 5575. More specific filters override broader ones. Future support for Flowspec v2 (with explicit ordering) is under consideration, pending vendor adoption.Blackholing and extended blackholing (eBH)Remote-triggered blackhole (RTBH) is a standardized protection method that the client manages via BGP by analyzing traffic, identifying the direction of the attack (i.e., the destination IP address). This method protects against volumetric attacks.Customers using Gcore IP Transit can trigger immediate blackholing for attacked prefixes via BGP, using the well-known blackhole community tag 65000:666. All traffic to that destination IP is dropped at Gcore’s edge.The list of supported BGP communities is available here.BGP extended blackholeExtended blackhole (eBH) allows for more granular blackholing that does not affect legitimate traffic. For customers unable to implement Flowspec directly, Gcore supports eBH. You announce target prefixes with pre-agreed BGP communities, and Gcore translates them into Flowspec mitigations.To configure this option, contact our NOC at noc@gcore.lu.Monitoring and limitationsGcore can support several logging transports, including mail and Slack.If the number of Flowspec prefixes exceeds the configured limit, Gcore DDoS Protection stops accepting new announcements, but BGP sessions and existing prefixes will stay active. Gcore will receive a notification that you reached the limit.How to activateActivation takes just two steps:Define rules on your edge router using Flowspec NLRI formatAnnounce rules via BGP to Gcore’s intermediate control planeThen, Gcore validates and propagates the filters to border routers. Filters are installed on edge devices and take effect immediately.If attack patterns are unknown, you’ll first need to detect anomalies using your existing monitoring stack, then define the appropriate Flowspec rules.Need help activating Flowspec? Get in touch via our 24/7 support channels and our experts will be glad to assist.Set up GRE and benefit from Flowspec today

Securing AI from the ground up: defense across the lifecycle
As more AI workloads shift to the edge for lower latency and localized processing, the attack surface expands. Defending a data center is old news. Now, you’re securing distributed training pipelines, mobile inference APIs, and storage environments that may operate independently of centralized infrastructure, especially in edge or federated learning contexts. Every stage introduces unique risks. Each one needs its own defenses.Let’s walk through the key security challenges across each phase of the AI lifecycle, and the hardening strategies that actually work.PhaseTop threatsHardening stepsTrainingData poisoning, leaksValidation, dataset integrity tracking, RBAC, adversarial trainingDevelopmentModel extraction, inversionRate limits, obfuscation, watermarking, penetration testingInferenceAdversarial inputs, spoofed accessInput filtering, endpoint auth, encryption, TEEsStorage and deploymentModel theft, tamperingEncrypted containers, signed builds, MFA, anomaly monitoringTraining: your model is only as good as its dataThe training phase sets the foundation. If the data going in is poisoned, biased, or tampered with, the model will learn all the wrong lessons and carry those flaws into production.Why it mattersData poisoning is subtle. You won’t see a red flag during training logs or a catastrophic failure at launch. These attacks don’t break training, they bend it.A poisoned model may appear functional, but behaves unpredictably, embeds logic triggers, or amplifies harmful bias. The impact is serious later in the AI workflow: compromised outputs, unexpected behavior, or regulatory non-compliance…not due to drift, but due to training-time manipulation.How to protect itValidate datasets with schema checks, label audits, and outlier detection.Version, sign, and hash all training data to verify integrity and trace changes.Apply RBAC and identity-aware proxies (like OPA or SPIFFE) to limit who can alter or inject data.Use adversarial training to improve model robustness against manipulated inputs.Development and testing: guard the logicOnce you’ve got a trained model, the next challenge is protecting the logic itself: what it knows and how it works. The goal here is to make attacks economically unfeasible.Why it mattersModels encode proprietary logic. When exposed via poorly secured APIs or unprotected inference endpoints, they’re vulnerable to:Model inversion: Extracting training dataExtraction: Reconstructing logicMembership inference: Revealing whether a datapoint was in trainingHow to protect itApply rate limits, logging, and anomaly detection to monitor usage patterns.Disable model export by default. Only enable with approval and logging.Use quantization, pruning, or graph obfuscation to reduce extractability.Explore output fingerprinting or watermarking to trace unauthorized use in high-value inference scenarios.Run white-box and black-box adversarial evaluations during testing.Integrate these security checks into your CI/CD pipeline as part of your MLOps workflow.Inference: real-time, real riskInference doesn’t get a free pass because it’s fast. Security needs to be just as real-time as the insights your AI delivers.Why it mattersAdversarial attacks exploit the way models generalize. A single pixel change or word swap can flip the classification.When inference powers fraud detection or autonomous systems, a small change can have a big impact.How to protect itSanitize input using JPEG compression, denoising, or frequency filtering.Train on adversarial examples to improve robustness.Enforce authentication and access control for all inference APIs—no open ports.Encrypt inference traffic with TLS. For added privacy, use trusted execution environments (TEEs).For highly sensitive cases, consider homomorphic encryption or SMPC—strong but compute-intensive solutions.Check out our free white paper on inference optimization.Storage and deployment: don’t let your model leakOnce your model’s trained and tested, you’ve still got to deploy and store it securely—often across multiple locations.Why it mattersUnsecured storage is a goldmine for attackers. With access to the model binary, they can reverse-engineer, clone, or rehost your IP.How to protect itStore models on encrypted volumes or within enclaves.Sign and verify builds before deployment.Enforce MFA, RBAC, and immutable logging on deployment pipelines.Monitor for anomalous access patterns—rate, volume, or source-based.Edge strategy: security that moves with your AIAs AI moves to the edge, centralized security breaks down. You need protection that operates as close to the data as your inference does.That’s why we at Gcore integrate protection into AI workflows from start to finish:WAAP and DDoS mitigation at edge nodes—not just centralized DCs.Encrypted transport (TLS 1.3) and in-node processing reduce exposure.Inline detection of API abuse and L7 attacks with auto-mitigation.180+ global PoPs to maintain consistency across regions.AI security is lifecycle securityNo single firewall, model tweak, or security plugin can secure AI workloads in isolation. You need defense in depth: layered, lifecycle-wide protections that work at the data layer, the API surface, and the edge.Ready to secure your AI stack from data to edge inference?Talk to our AI security experts

3 ways to safeguard your website against DDoS attacks—and why it matters
DDoS (distributed denial-of-service) attacks are a type of cyberattack in which a hacker overwhelms a server with an excessive number of requests, causing the server to stop functioning correctly and denying access to legitimate users. The volume of these types of attacks is increasing, with a 56% year-on-year rise recorded in late 2024, driven by factors including the growing availability of AI-powered tools, poorly secured IoT devices, and geopolitical tensions worldwide.Fortunately, there are effective ways to defend against DDoS attacks. Because these threats can target different layers of your network, a single tool isn’t enough, and a multi-layered approach is necessary. Businesses need to protect both the website itself and the infrastructure behind it. This article explores the three key security solutions that work together to protect your website—and the costly consequences of failing to prepare.The consequences of not protecting your website against DDoS attacksIf your website isn’t sufficiently protected, DDoS attacks can have severe and far-reaching impacts on your website, business, and reputation. They not only disrupt the user experience but can spiral into complex, costly recovery efforts. Safeguarding your website against DDoS attacks is essential to preventing the following serious outcomes:Downtime: DDoS attacks can exhaust server resources (CPU, RAM, throughput), taking websites offline and making them unavailable to end users.Loss of business/customers: Frustrated users will leave, and many won’t return after failed checkouts or broken sessions.Financial losses: By obstructing online sales, DDoS attacks can cause businesses to suffer substantial loss of revenue.Reputational damage: Websites or businesses that suffer repeated unmitigated DDoS attacks may cause customers to lose trust in them.Loss of SEO rankings: A website could lose its hard-won SEO ranking if it experiences extended downtime due to DDoS attacks.Disaster recovery costs: DDoS disaster recovery costs can escalate quickly, encompassing hardware replacement, software upgrades, and the need to hire external specialists.Solution #1: Implement dedicated DDoS protection to safeguard your infrastructureAdvanced DDoS protection measures are customized solutions designed to protect your servers and infrastructure against DDoS attacks. DDoS protection helps defend against malicious traffic designed to crash servers and interrupt service.Solutions like Gcore DDoS Protection continuously monitor incoming traffic for suspicious patterns, allowing them to automatically detect and mitigate attacks in real time. If your resources are attacked, the system filters out harmful traffic before it reaches your servers. This means that real users can access your website without interruption, even during an attack.For example, a financial services provider could be targeted by cybercriminals attempting to disrupt services with a large-scale volumetric DDoS attack. With dedicated DDoS protection, the provider can automatically detect and filter out malicious traffic before it impacts users. Customers can continue to log in, check balances, and complete transactions, while the system adapts to the evolving nature of the attack in the background, maintaining uninterrupted service.The protection scales with your business needs, automatically adapting to higher traffic loads or more complex attacks. Up-to-date reports and round-the-clock technical support allow you to keep track of your website status at all times.Solution #2: Enable WAAP to protect your websiteGcore WAAP (web application and API protection) is a comprehensive solution that monitors, detects, and mitigates cyber threats, including DDoS layer 7 attacks. WAAP uses AI-driven algorithms to monitor, detect, and mitigate threats in real time, offering an additional layer of defense against sophisticated attackers. Once set up, the system provides powerful tools to create custom rules and set specific triggers. For example, you can specify the conditions under which certain requests should be blocked, such as sudden spikes in API calls or specific malicious patterns common in DDoS attacks.For instance, an e-commerce platform during a major sale like Black Friday could be targeted by bots attempting to flood the site with fake login or checkout requests. WAAP can differentiate between genuine users and malicious bots by analyzing traffic patterns, rate of requests, and attack behaviors. It blocks malicious requests so that real customers can continue to complete transactions without disruption.Solution #3: Connect to a CDN to strengthen defenses furtherA trustworthy content delivery network (CDN) is another valuable addition to your security stack. A CDN is a globally distributed server network that ensures efficient content delivery. CDNs spread traffic across multiple global edge servers, reducing the load on the origin server. During a DDoS attack, a CDN with DDoS protection can protect servers and end users. It filters traffic at the edge, blocking threats before they ever reach your infrastructure. Caching servers within the CDN network then deliver the requested content to legitimate users, preventing network congestion and denial of service to end users.For instance, a gaming company launching a highly anticipated multiplayer title could face a massive surge in traffic as players around the world attempt to download and access the game simultaneously. This critical moment also makes the platform a prime target for DDoS attacks aimed at disrupting the launch. A CDN with integrated DDoS protection can absorb and filter out malicious traffic at the edge before it reaches the core infrastructure. Legitimate players continue to enjoy fast downloads and seamless gameplay, while the origin servers remain stable and protected from overload or downtime.In addition, Super Transit intelligently routes your traffic via Gcore’s 180+ point-of-presence global network, proactively detecting, mitigating, and filtering DDoS attacks. Even mid-attack, users experience seamless access with no interruptions. They also benefit from an enhanced end-user experience, thanks to shorter routes between users and servers that reduce latency.Taking the next steps to protect your websiteDDoS attacks pose significant threats to websites, but a proactive approach is the best way to keep your site online, secure, and resilient. Regardless of your industry or location, it’s crucial to take action to safeguard your website and maintain its uninterrupted availability.Enabling Gcore DDoS protection is a simple and proven way to boost your digital infrastructure’s resiliency against different types of DDoS attacks. Gcore DDoS protection also integrates with other security solutions, including Gcore WAAP, which protects your website and CDNs. These tools work seamlessly together to provide advanced website protection, offering improved security and performance in one intuitive platform.If you’re ready to try Gcore Edge Security, fill in the form below and one of our security experts will be in touch for a personalized consultation.

From reactive to proactive: how AI is transforming WAF cybersecurity solutions
While digital transformation in recent years has driven great innovation, cyber threats have changed in parallel, evolving to target the very applications businesses rely on to thrive. Traditional web application security measures, foundational as they may be, are no longer effective in combating sophisticated attacks in time. Enter the next generation of WAFs (web application firewalls) powered by artificial intelligence.Next-generation WAFs, often incorporated into WAAP solutions, do much more than respond to threats; instead, they will use AI and ML-powered techniques to predict and neutralize threats in real time. This helps businesses to stay ahead of bad actors by securing applications, keeping valuable data safe, and protecting hard-earned brand reputations against ever-present dangers in an expanding digital world.From static to AI-powered web application firewallsTraditional WAFs were relied on to protect web applications against known threats, such as SQL injection and cross-site scripting. They’ve done a great job as the first line of defense, but their reliance on static rules and signature-based detection means they struggle to keep up with today’s fast-evolving cyber threats. To understand in depth why traditional WAFs are no longer sufficient in today’s threat landscape, read our ebook.AI and ML have already revolutionized what a WAF can do. AI/ML-driven WAFs can examine vast streams of traffic data and detect patterns, including new threats, right at the emergence stage. The real-time adaptability that this allows is effective even against zero-day attacks and complex new hacking techniques.How AI-powered WAP proactively stops threatsOne of the most significant advantages of AI/ML-powered WAFs is proactive identification and prevention capabilities. Here's how this works:Traffic pattern analysis: AI systems monitor both incoming and outgoing traffic to set up baselines for normal behavior. This can then allow for the detection of anomalies that could show a zero-day attack or malicious activity.Real-time decision making: Machine learning models keep learning from live traffic and detect suspicious activities on the go sans waiting for any updates in the rule set. This proactive approach ensures that businesses are guarded from emerging threats before they escalate.Heuristic tagging and behavioral insights: Advanced heuristics used by AI-driven systems tag everything from sessionless clients to unusual request frequencies. It helps administrators classify potential bots or automated attacks much faster.Ability to counter zero-day attacks: Traditional WAF solutions can only mitigate attacks that are already in the process of accessing sensitive areas. AI/ML-powered WAFs, on the other hand, can use data to identify and detect patterns indicative of future attacks, stopping attackers in their tracks and preventing future damage.Intelligent policy management: Adaptive WAFs detect suspicious activity and alert users to misconfigured security policies accordingly. They reduce the need for manual configuration while assuring better protection.Integrated defense layers: One of the strongest features of AI/ML-powered systems is the ease with which they integrate other layers of security, including bot protection and DDoS mitigation, into a connected architecture that protects several attack surfaces.User experience and operational impactAI-driven WAFs improve the day-to-day operations of security teams by transforming how they approach threat management. With intuitive dashboards and clearly presented analytics, as offered by Gcore WAAP, these tools empower security professionals to quickly interpret complex data, streamline decision-making, and respond proactively to threats.Instead of manually analyzing vast amounts of traffic data, teams now receive immediate alerts highlighting critical security events, such as abnormal IP behaviors or unusual session activity. Each alert includes actionable recommendations, enabling rapid adjustments to security policies without guesswork or delay.By automating the identification of sophisticated threats such as credential stuffing, scraping, and DDoS attacks, AI-powered solutions significantly reduce manual workloads. Advanced behavioral profiling and heuristic tagging pinpoint genuine threats with high accuracy, allowing security teams to concentrate their efforts where they're most needed.Embracing intelligent security with Gcore’s AI-driven WAAPOur AI-powered WAAP solution provides intelligent, interrelated protection to empower companies to actively outperform even the most sophisticated, ever-changing threats by applying advanced traffic analysis, heuristic tagging, and adaptive learning. With its cross-domain functionality and actionable security insights, this solution stands out as an invaluable tool for both security architects and strategic decision-makers. It combines innovation and practicality to address the needs of modern businesses.Curious to learn more about WAAP? Check out our ebook for cybersecurity best practices, the most common threats to look out for, and how WAAP can safeguard your businesses’ digital assets. Or, get in touch with our team to learn more about Gcore WAAP.Learn why WAAP is essential for modern businesses with a free ebook

How AI helps prevent API attacks
APIs have become an integral part of modern digital infrastructure, and it can be easy to take their security for granted. But, unfortunately, APIs are a popular target for attackers. Hackers can use APIs to access crucial data and services, and breaching APIs allows attackers to bypass traditional security controls.Most companies focus on speed of development and deployment ahead of security when crafting APIs, making them vulnerable to issues like insecure authentication, poor validation, or misconfigured endpoints, which attackers can abuse. Additionally, the interconnected nature of APIs creates multiple endpoints, widening the attack surface and creating additional points of entry that attackers can exploit.As threats evolve and the attack surface grows to include more API endpoints, integrating AI threat detection and mitigation is an absolute must for businesses to take serious, deliberate action against API cyberattacks. Let’s find out why.Staying ahead of zero-day API attacksOf all the cyber attacks that commonly threaten APIs, zero-day attacks, leveraging unknown vulnerabilities, are probably the toughest to defeat. Traditional solutions rely more on the existence of preconfigured rules or signatures along with human interference to detect and block such attacks. This approach often fails against novel threats and can block legitimate traffic, leaving applications vulnerable and making APIs inaccessible to users.APIs must balance between allowing legitimate users access and maintaining security. AI and ML technologies excel at identifying zero-day attacks based on pattern and behavior analysis rather than known signatures. For instance, heuristic algorithms can detect anomalies, such as sudden spikes in unusual traffic or behaviors indicative of malicious intent.Consider the following example: A certain IP address makes an abnormally large number of requests to a rarely accessed endpoint. Even without prior knowledge of the IP or attack vector, an AI/ML-enhanced solution can flag the activity as suspicious and block it proactively. Using minimal indicators, such as frequency patterns or traffic anomalies, AI can stop attackers before they fully exploit vulnerabilities. Additionally, this means that only suspicious IPs are blocked, and legitimate users can continue to access APIs unimpeded.The risks of shadow APIsOne of the biggest risks is shadow APIs, which are endpoints that exist but aren't documented or monitored. These can arise from configuration mistakes, forgotten updates, or even rogue development practices. These unknown APIs are the ideal target for Layer 7 attacks, as they are often left undefended, making them easy targets.AI-powered API discovery tools map both known and unknown API endpoints, enabling the grouping and management of these endpoints so sensitive APIs can be properly secured. This level of visibility is critical to securing systems against API-targeting attacks; without it, businesses are left in the dark.API discovery as a critical security practiceWAAP with AI/ML capabilities excels in API security because it accurately checks and analyzes API traffic. The Gcore API discovery engine offers 97 to 99 percent accuracy, mapping APIs in users’ domains and using data to recommend policies to help secure APIs.How heuristics enhance WAAP AI capabilities to protect APIsWhile AI and ML form the backbone of modern WAAPs, heuristic methods complement them in enhancing detection accuracy. Heuristics allow the system to inspect granular behaviors, such as mouse clicks or scrolling patterns, which distinguish legitimate users from bots.For example, most scraping attacks involve automated scripts that interact with APIs in predictable and repetitive manners. In those cases, WAAP can use request patterns or user action monitoring to identify the script with high accuracy. Heuristics may define bots by checking how users interact with page elements, such as buttons or forms, and flagging those that behave unnaturally.This layered approach ensures that the most sophisticated automated attack attempts are caught in the net and mitigated without affecting legitimate traffic.Protect your APIs with the click of a button using Gcore WAAPAI offers proactive, intelligent solutions that can address the modern complexities of cybersecurity. These technologies empower organizations to secure APIs against even the most sophisticated threats, including zero-day vulnerabilities and undiscovered APIs.Interested in protecting your APIs with WAAP? Download our ebook to discover cybersecurity best practices, the most prevalent threats, and how WAAP can protect your business’s digital infrastructure, including APIs. Or, reach out to our team to learn more about Gcore WAAP.Discover why WAAP is a must-have for API protection
Subscribe to our newsletter
Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.