Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
Under attack?

Products

Solutions

Resources

Partners

Why Gcore

  1. Home
  2. Developers
  3. How to Protect Your APIs from Security Threats

How to Protect Your APIs from Security Threats

  • By Gcore
  • March 29, 2024
  • 3 min read
How to Protect Your APIs from Security Threats

In the ever-evolving tech landscape, APIs stand at the forefront, allowing seamless interaction between diverse software platforms. But here’s the catch: with excellent connectivity comes the risk of security threats. But worry not—this article is here to guide you. This article will walk you through practical steps to shield your APIs against these risks, helping you keep your digital ecosystem safe and sound.

What Are the Main API Security Threats

APIs face a variety of security threats that can compromise data integrity, privacy, and system availability. Here are some of the most common ones:

  1. Injection Attacks. These occur when an attacker sends malicious data to the API, which is then processed by the backend system. SQL injection, Command injection, and Cross-Site Scripting (XSS) are typical examples.
  2. Broken Authentication. Occurs when authentication mechanisms are implemented incorrectly, allowing attackers to assume the identities of legitimate users.
  3. Sensitive Data Exposure. Involves the accidental exposure of sensitive information due to inadequate encryption or flaws in data protection mechanisms.
  4. Broken Access Control. This happens when users can access data or perform actions outside of their permissions. For example, accessing data of other users without proper authorization.
  5. Security Misconfiguration. This broad category includes issues like improperly configured permissions, unnecessary services running on the API server, or verbose error messages containing sensitive information.
  6. Man-in-the-Middle (MitM) Attacks. These attacks involve an attacker secretly relaying and possibly altering the communication between two parties who believe they are directly communicating with each other.
  7. Cross-Site Request Forgery (CSRF). A malicious exploit of a website where unauthorized commands are transmitted from a user that the web application trusts.

Mitigating these vulnerabilities involves employing secure coding techniques, conducting thorough testing, and applying strong security protocols and frameworks. In the next section, we will explore how to protect your APIs against security threats.

Steps to Protect Your APIs Against Security Threats

To protect your APIs from security threats, below are key steps, along with examples of commands and sample outputs to ensure your API security:

#1 Implement Authentication and Authorization

Utilize robust authentication mechanisms to verify user identity and authorization strategies like OAuth 2.0 to manage access to resources. Using OAuth 2.0, you might set up a token-based authentication system where clients request access tokens using credentials.

# Requesting an access tokencurl -X POST https://yourapi.com/oauth/token \  -d "grant_type=client_credentials" \  -d "client_id=your_client_id" \  -d "client_secret=your_client_secret"

Sample Output:

{  "access_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9...",  "token_type": "bearer",  "expires_in": 3600}

#2 Secure Communication with HTTPS

Encrypt data in transit by using HTTPS to prevent eavesdropping and man-in-the-middle attacks. Enabling HTTPS might involve configuring your web server with SSL/TLS certificates. For example, using Let’s Encrypt with Nginx:

sudo certbot --nginx -d yourapi.com

#3 Validate and Sanitize Input

Protect against injection and other attacks by validating and sanitizing all user inputs. For a Node.js API, using express-validator middleware to validate incoming data:

app.post('/api/user', [  body('email').isEmail(),  body('password').isLength({ min: 5 })], (req, res) => {  const errors = validationResult(req);  if (!errors.isEmpty()) {    return res.status(400).json({ errors: errors.array() });  }  // Proceed with user registration});

#4 Use Rate Limiting

Prevent abuse by limiting how often a client can make requests within a specified time frame. Implementing rate limiting in Express.js with the express-rate-limit library:

const rateLimit = require('express-rate-limit');const apiLimiter = rateLimit({  windowMs: 15 * 60 * 1000, // 15 minutes  max: 100});app.use('/api/', apiLimiter);

#5 Regular Security Audits

Regularly audit your API and its dependencies for vulnerabilities. Using npm audit for Node.js projects to identify known vulnerabilities in dependencies.

npm audit

Sample Output:

found 0 vulnerabilitiesin 1050 scanned packages

#6 Implement Access Controls

Ensure that users can only access resources they are authorized to view or edit, typically through roles or permissions.

#7 Monitor and Log Activity

Keep detailed logs of API activity and monitor these logs for suspicious behavior.

#8 Keep Dependencies Up-to-Date

Regularly update all libraries, frameworks, and other dependencies to mitigate known vulnerabilities. For a Node.js project, updating all dependencies to their latest versions.

npm update

#9 Secure API Keys

If your API uses keys for access, ensure they are securely stored and managed.

#10 Conduct Penetration Testing

Regularly test your API with penetration testing to identify and fix security vulnerabilities.

Following these steps will significantly enhance the security of your APIs against common threats. Remember, security is an ongoing process that requires regular reviews and updates to adapt to new vulnerabilities and attack vectors.

Conclusion

As we’ve explored key strategies for API protection, it’s evident that a robust defense mechanism is essential to counter the sophisticated threats targeting APIs. This is where Gcore Web Application Firewall & API Protection (WAAP) stands out. Designed to tackle the complex challenges APIs face, Gcore WAAP offers comprehensive protection with features like access control, data breach prevention, and DoS attack mitigation. It’s an advanced solution for those aiming to stay ahead of security threats.

Explore more at Web Application Firewall & API Protection (WAAP)

Related Articles

What are zero-day attacks? Risks, prevention tips, and new trends

Zero-day attack is a term for any attack that targets a vulnerability in software or hardware that has yet to be discovered by the vendor or developer. The term “zero-day” stems from the idea that the developer has had zero days to address or patch the vulnerability before it is exploited.In a zero-day attack, an attacker finds a vulnerability before a developer discovers and patches itThe danger of zero-day attacks lies in their unknownness. Because the vulnerabilities they target are undiscovered, traditional defense mechanisms or firewalls may not detect them as no specific patch exists, making attack success rates higher than for known attack types. This makes proactive and innovative security measures, like AI-enabled WAAP, crucial for organizations to stay secure.Why are zero-day attacks a threat to businesses?Zero-day attacks pose a unique challenge for businesses due to their unpredictable nature. Since these exploits take advantage of previously unknown vulnerabilities, organizations have no warning or time to deploy a patch before they are targeted. This makes zero-day attacks exceptionally difficult to detect and mitigate, leaving businesses vulnerable to potentially severe consequences. As a result, zero-day attacks can have devastating consequences for organizations of all sizes. They pose financial, reputational, and regulatory risks that can be difficult to recover from, including the following:Financial and operational damage: Ransomware attacks leveraging zero-day vulnerabilities can cripple operations and lead to significant financial losses due to data breach fines. According to recent studies, the average cost of a data breach in 2025 has surpassed $5 million, with zero-day exploits contributing significantly to these figures.Reputation and trust erosion: Beyond monetary losses, zero-day attacks erode customer trust. A single breach can damage an organization’s reputation, leading to customer churn and lost opportunities.Regulatory implications: With strict regulations like GDPR in the EU and similar frameworks emerging globally, organizations face hefty fines for data breaches. Zero-day vulnerabilities, though difficult to predict, do not exempt businesses from compliance obligations.The threat is made clear by recent successful examples of zero-day attacks. The Log4j vulnerability (Log4Shell), discovered in 2021, affected millions of applications worldwide and was widely exploited. In 2023, the MOVEit Transfer exploit was used to compromise data from numerous government and corporate systems. These incidents demonstrate how zero-day attacks can have far-reaching consequences across different industries.New trends in zero-day attacksAs cybercriminals become more sophisticated, zero-day attacks continue to evolve. New methods and technologies are making it easier for attackers to exploit vulnerabilities before they are discovered. The latest trends in zero-day attacks include AI-powered attacks, expanding attack surfaces, and sophisticated multi-vendor attacks.AI-powered attacksAttackers are increasingly leveraging artificial intelligence to identify and exploit vulnerabilities faster than ever before. AI tools can analyze vast amounts of code and detect potential weaknesses in a fraction of the time it would take a human. Moreover, AI can automate the creation of malware, making attacks more frequent and harder to counter.For example, AI-driven malware can adapt in real time to avoid detection, making it particularly effective in targeting enterprise networks and cloud-based applications. Hypothetically, an attacker could use an AI algorithm to scan for weaknesses in widely used SaaS applications, launching an exploit before a patch is even possible.Expanding attack surfacesThe digital transformation continues to expand the attack surface for zero-day exploits. APIs, IoT devices, and cloud-based services are increasingly targeted, as they often rely on interconnected systems with complex dependencies. A single unpatched vulnerability in an API could provide attackers with access to critical data or applications.Sophisticated multi-vector attacksCybercriminals are combining zero-day exploits with other tactics, such as phishing or social engineering, to create multi-vector attacks. This approach increases the likelihood of success and makes defense efforts more challenging.Prevent zero-day attacks with AI-powered WAAPWAAP solutions are becoming a cornerstone of modern cybersecurity, particularly in addressing zero-day vulnerabilities. Here’s how they help:Behavioral analytics: WAAP solutions use behavioral models to detect unusual traffic patterns, blocking potential exploits before they can cause damage.Automated patching: By shielding applications with virtual patches, WAAP can provide immediate protection against vulnerabilities while a permanent fix is developed.API security: With APIs increasingly targeted, WAAP’s ability to secure API endpoints is critical. It ensures that only authorized requests are processed, reducing the risk of exploitation.How WAAP stops AI-driven zero-day attacksAI is not just a tool for attackers—it is also a powerful ally for defenders. Machine learning algorithms can analyze user behavior and network activity to identify anomalies in real time. These systems can detect and block suspicious activities that might indicate an attempted zero-day exploit.Threat intelligence platforms powered by AI can also predict emerging vulnerabilities by analyzing trends and known exploits. This enables organizations to prepare for potential attacks before they occur.At Gcore, our WAAP solution combines these features to provide comprehensive protection. By leveraging cutting-edge AI and machine learning, Gcore WAAP detects and mitigates threats in real time, keeping web applications and APIs secure even from zero-day attacks.More prevention techniquesBeyond WAAP, layering protection techniques can further enhance your business’ ability to ward off zero-day attacks. Consider the following measures:Implement a robust patch management system so that known vulnerabilities are addressed promptly.Conduct regular security assessments and penetration testing to help identify potential weaknesses before attackers can exploit them.Educate employees about phishing and other social engineering tactics to decease the likelihood of successful attacks.Protect your business against zero-day attacks with GcoreZero-day attacks pose a significant threat to businesses, with financial, reputational, and regulatory consequences. The rise of AI-powered cyberattacks and expanding digital attack surfaces make these threats even more pressing. Organizations must adopt proactive security measures, including AI-driven defense mechanisms like WAAP, to protect their critical applications and data. By leveraging behavioral analytics, automated patching, and advanced threat intelligence, businesses can minimize their risk and stay ahead of attackers.Gcore’s AI-powered WAAP provides the robust protection your business needs to defend against zero-day attacks. With real-time threat detection, virtual patching, and API security, Gcore WAAP ensures that your web applications remain protected against even the most advanced cyber threats, including zero-day threats. Don’t wait until it’s too late—secure your business today with Gcore’s cutting-edge security solutions.Discover how WAAP can help stop zero-day attacks

Why do bad actors carry out Minecraft DDoS attacks?

One of the most played video games in the world, Minecraft, relies on servers that are frequently a target of distributed denial-of-service (DDoS) attacks. But why would malicious actors target Minecraft servers? In this article, we’ll look at why these servers are so prone to DDoS attacks and uncover the impact such attacks have on the gaming community and broader cybersecurity landscape. For a comprehensive analysis and expert tips, read our ultimate guide to preventing DDoS attacks on Minecraft servers.Disruption for financial gainFinancial exploitation is a typical motivator for DDoS attacks in Minecraft. Cybercriminals frequently demand ransom to stop their attacks. Server owners, especially those with lucrative private or public servers, may feel pressured to pay to restore normalcy. In some cases, bad actors intentionally disrupt competitors to draw players to their own servers, leveraging downtime for monetary advantage.Services that offer DDoS attacks for hire make these attacks more accessible and widespread. These malicious services target Minecraft servers because the game is so popular, making it an attractive and easy option for attackers.Player and server rivalriesRivalries within the Minecraft ecosystem often escalate to DDoS attacks, driven by competition among players, servers, hosts, and businesses. Players may target opponents during tournaments to disrupt their gaming experience, hoping to secure prize money for themselves. Similarly, players on one server may initiate attacks to draw members to their server and harm the reputation of other servers. Beyond individual players, server hosts also engage in DDoS attacks to disrupt and induce outages for their rivals, subsequently attempting to poach their customers. On a bigger scale, local pirate servers may target gaming service providers entering new markets to harm their brand and hold onto market share. These rivalries highlight the competitive and occasionally antagonistic character of the Minecraft community, where the stakes frequently surpass in-game achievements.Personal vendettas and retaliationPersonal conflicts can occasionally be the source of DDoS attacks in Minecraft. In these situations, servers are targeted in retribution by individual gamers or disgruntled former employees. These attacks are frequently the result of complaints about unsolved conflicts, bans, or disagreements over in-game behavior. Retaliation-driven DDoS events can cause significant disruption, although lower in scope than attacks with financial motivations.Displaying technical masterySome attackers carry out DDoS attacks to showcase their abilities. Minecraft is a perfect testing ground because of its large player base and community-driven server infrastructure. Successful strikes that demonstrate their skills enhance reputations within some underground communities. Instead of being a means to an end, the act itself becomes a badge of honor for those involved.HacktivismHacktivists—people who employ hacking as a form of protest—occasionally target Minecraft servers to further their political or social goals. These attacks are meant to raise awareness of a subject rather than be driven by personal grievances or material gain. To promote their message, they might, for instance, assault servers that are thought to support unfair policies or practices. This would be an example of digital activism. Even though they are less frequent, these instances highlight the various reasons why DDoS attacks occur.Data theftMinecraft servers often hold significant user data, including email addresses, usernames, and sometimes even payment information. Malicious actors sometimes launch DDoS attacks as a smokescreen to divert server administrators’ attention from their attempts to breach the server and steal confidential information. This dual-purpose approach disrupts gameplay and poses significant risks to user privacy and security, making data theft one of the more insidious motives behind such attacks.Securing the Minecraft ecosystemDDoS attacks against Minecraft are motivated by various factors, including personal grudges, data theft, and financial gain. Every attack reveals wider cybersecurity threats, interferes with gameplay, and damages community trust. Understanding these motivations can help server owners take informed steps to secure their servers, but often, investing in reliable DDoS protection is the simplest and most effective way to guarantee that Minecraft remains a safe and enjoyable experience for players worldwide. By addressing the root causes and improving server resilience, stakeholders can mitigate the impact of such attacks and protect the integrity of the game.Gcore offers robust, multi-layered security solutions designed to shield gaming communities from the ever-growing threat of DDoS attacks. Founded by gamers for gamers, Gcore understands the industry’s unique challenges. Our tools enable smooth gameplay and peace of mind for both server owners and players.Want an in-depth look at how to secure your Minecraft servers?Download our ultimate guide

What is a DDoS attack?

A DDoS (distributed denial-of-service) attack is a type of cyberattack in which a hacker overwhelms a server with an excessive number of requests, causing the server to stop functioning properly. This can cause the website, app, game, or other online service to become slow, unresponsive, or completely unavailable. DDoS attacks can result in lost customers and revenue for the victim. DDoS attacks are becoming increasingly common, with a 46% increase in the first half of 2024 compared to the same period in 2023.How do DDoS attacks work?DDoS attacks work by overwhelming and flooding a company’s resources so that legitimate users cannot get through. The attacker creates huge amounts of malicious traffic by creating a botnet, a collection of compromised devices that work together to carry out the attack without the device owners’ knowledge. The attacker, referred to as the botmaster, sends instructions to the botnet in order to implement the attack. The attacker forces these bots to send an enormous amount of internet traffic to a victim’s resource. As a result, the server can’t process real users trying to access the website or app. This causes customer dissatisfaction and frustration, lost revenue, and reputational damage for companies.Think of it this way: Imagine a vast call center. Someone dials the number but gets a busy tone. This is because a single spammer has made thousands of automated calls from different phones. The call center’s lines are overloaded, and the legitimate callers cannot get through.DDoS attacks work similarly, but online: The fraudster’s activity completely blocks the end users from reaching the website or online service.Different types of DDoS attacksThere are three categories of DDoS attacks, each attacking a different network communication layer. These layers come from the OSI (Open Systems Interconnection) model, the foundational framework for network communication that describes how different systems and devices connect and communicate. This model has seven layers. DDoS attacks seek to exploit vulnerabilities across three of them: L3, L4, and L7.While all three types of attacks have the same end goal, they differ in how they work and which online resources they target. L3 and L4 DDoS attacks target servers and infrastructure, while L7 attacks affect the app itself.Volumetric attacks (L3) overwhelm the network equipment, bandwidth, or server with a high volume of traffic.Connection protocol attacks (L4) target the resources of a network-based service, like website firewalls or server operating systems.Application layer attacks (L7) overwhelm the network layer, where the application operates with many malicious requests, which leads to application failure.1. Volumetric attacks (L3)L3, or volumetric, DDoS attacks are the most common form of DDoS attack. They work by flooding internal networks with malicious traffic, aiming to exhaust bandwidth and disrupt the connection between the target network or service and the internet. By exploiting key communication protocols, attackers send massive amounts of traffic, often with spoofed IP addresses, to overwhelm the victim’s network. As the network equipment strains to process this influx of data, legitimate requests are delayed or dropped, leading to service degradation or even complete network failure.2. Connection protocol attacks (L4)Protocol attacks occur when attackers send connection requests from multiple IP addresses to target server open ports. One common tactic is a SYN flood, where attackers initiate connections without completing them. This forces the server to allocate resources to these unfinished sessions, quickly leading to resource exhaustion. As these fake requests consume the server’s CPU and memory, legitimate traffic is unable to get through. Firewalls and load balancers managing incoming traffic can also be overwhelmed, resulting in service outages.3. Application layer attacks (L7)Application layer attacks strike at the L7 layer, where applications operate. Web applications handle everything from simple static websites to complex platforms like e-commerce sites, social media networks, and SaaS solutions. In an L7 attack, a hacker deploys multiple bots or machines to repeatedly request the same resource until the server becomes overwhelmed.By mimicking genuine user behavior, attackers flood the web application with seemingly legitimate requests, often at high rates. For example, they might repeatedly submit incorrect login credentials or overload the search function by continuously searching for products. As the server consumes its resources managing these fake requests, genuine users experience slow response times or may be completely denied access to the application.How can DDoS attacks be prevented?To stay one step ahead of attackers, use a DDoS protection solution to protect your web resources. A mitigation solution detects and blocks harmful DDoS traffic sent by attackers, keeping your servers and applications safe and functional. If an attacker targets your server, your legitimate users won’t notice any change—even during a considerable attack—because the protection solution will allow safe traffic while identifying and blocking malicious requests.DDoS protection providers also give you reports on attempted DDoS attacks. This way, you can track when the attack happened, as well as the size and scale of the attack. This enables you to respond effectively, analyze the potential implications of the attack, and implement risk management strategies to mitigate future disruptions.Repel DDoS attacks with GcoreAt Gcore, we offer robust and proven security solutions to protect your business from DDoS attacks. Gcore DDoS Protection provides comprehensive mitigation at L3, L4, and L7 for websites, apps, and servers. We also offer L7 protection as part of Gcore WAAP, which keeps your web apps and APIs secure against a range of modern threats using AI-enabled threat detection.Take a look at our recent Radar report to learn more about the latest DDoS attack trends and the changing strategies and patterns of cyberattacks.Read our DDoS Attack Trends Radar report

How to Spot and Stop a DDoS Attack

The faster you detect and resolve a DDoS (distributed denial-of-service) attack, the less damage it can do to your business. Read on to learn how to identify the signs of a DDoS attack, differentiate it from other issues, and implement effective protection strategies to safeguard your business. You’ll also discover why professional mitigation is so important for your business.The Chronology of a DDoS AttackThe business impact of a DDoS attack generally increases the longer it continues. While the first few minutes might not be noticeable without a dedicated solution with monitoring capabilities, your digital services could be taken offline within an hour. No matter who your customer is or how you serve them, every business stands to lose customers, credibility, and revenue through downtime.The First Few Minutes: Initial Traffic SurgeAttackers often start with a low-volume traffic flow to avoid early detection. This phase, known as pre-flooding, evaluates the target system’s response and defenses. You may notice a slight increase in traffic, but it could still be within the range of normal fluctuations.Professional DDoS mitigation services use algorithms to spot these surges, identify whether the traffic increase is malicious, and stop attacks before they can have an impact. Without professional protection, it’s almost impossible to spot this pre-flooding phase, leading you into the following phases of an attack.The First Hour: Escalating TrafficThe attack will quickly escalate, resulting in a sudden and extreme increase in traffic volume. During this stage, network performance will start to degrade noticeably, causing unusually slow loading times for websites and services.Look out for network disconnections, or unusually slow performance. These are telltale signs of a DDoS attack in its early stages.The First Few Hours: Service DisruptionAs the attack intensifies, the website may become completely inaccessible. You might experience an increased volume of spam emails as part of a coordinated effort to overwhelm your systems. Frequent loss of connectivity within the local network can occur as the attack overloads the infrastructure.You can identify this stage by looking for website or network unavailability. Users will experience continuous problems when trying to connect to the targeted application or server.Within 24 Hours: Sustained ImpactIf the attack continues, the prolonged high traffic volume will cause extended service outages and significant slowdowns. By this point, it is clear that a DDoS attack is in progress, especially if multiple indicators are present simultaneously.By now, not only is your website and/or network unavailable, but you’re also at high risk of data breaches due to the loss of control of your digital resources.Distinguishing DDoS Attacks from Other IssuesWhile DDoS attack symptoms like slow performance and service outages are common, they can also be caused by other problems. Here’s how to differentiate between a DDoS attack and other issues:AspectDDoS attackHosting problemsLegitimate traffic spikeSoftware issuesTraffic volumeSudden, extreme increaseNo significant increaseHigh but expected during peaksNormal, higher, lower, or zeroService responseExtremely slow or unavailableSlow or intermittentSlower but usually functionalErratic, with specific errorsError messagesFrequent Service UnavailableInternal Server Error, TimeoutNo specific errors, slower responsesSpecific to the softwareDurationProlonged, until mitigatedVaries, often until resolvedTemporary, during peaks, often predictableVaries based on the bugSource of trafficMultiple, distributed, malicious signaturesConsistent with normal traffic, localizedGeographically diverse, consistent patternsDepends on the user baseProtective Strategies Against DDoS AttacksPrevention is the best defense against DDoS attacks. Here are some strategies to protect your business:Content delivery networks (CDNs): CDNs distribute your traffic across multiple servers worldwide, reducing the load on any single server and mitigating the impact of DDoS attacks.DDoS protection solutions: These services provide specialized tools to detect, mitigate, and block DDoS attacks. They continuously monitor traffic patterns in real time to detect anomalies and automatically respond to and stop attacks without manual intervention.Web application and API protection (WAAP): WAAP solutions protect web applications and APIs from a wide range of threats, including DDoS attacks. They use machine learning and behavioral analysis to detect and block sophisticated attacks, from DDoS assaults to SQL injections.Gcore provides all three protection strategies in a single platform, offering your business the security it needs to thrive in a challenging threat landscape.Don’t Delay, Protect Your Business NowGcore provides comprehensive DDoS protection, keeping your services online and your business thriving even during an attack. Explore Gcore DDoS Protection or get instant protection now.Discover the latest DDoS trends and threats in our H3 2023 report

Improve Your Privacy and Data Security with TLS Encryption on CDN

The web is a public infrastructure: Anyone can use it. Encryption is a must to ensure that communications over this public infrastructure are secure and private. You don’t want anyone to read or modify the data you send or receive, like credit card information when paying for an online service.TLS encryption is a basic yet crucial safeguard that ensures only the client (the user’s device, like a laptop) and server can read your request and response data; third parties are locked out. You can run TLS on a CDN for improved performance, caching, and TLS management. If you want to learn more about TLS and how running it on a CDN can improve your infrastructure, this is the right place to start.What Is TLS Encryption and Why Does It Matter?TLS, transport layer security, encrypts data sent via the web to prevent it from being seen or changed while it’s in transit. For that reason, it’s called encryption in-transit technology. TLS is also commonly called HTTPS when used with HTTP or SSL, as previous versions of the technology were based on it. TLS ensures high encryption performance and forward secrecy. To learn more about encryption, check out our dedicated article.TLS is a vital part of the web because it ensures trust for end users and search engines alike. End users can rest assured that their data—like online banking information or photos of their children—can’t be accessed. Search engines know that information protected by TLS is trustworthy, so they rate it higher than non-protected content.What’s the Connection Between TLS and CDN?A CDN, or content delivery network, helps improve your website’s performance by handling the delivery of your content from its own servers rather than your website’s server. When a CDN uses TLS, it ensures that your content is encrypted as it travels from your server to the CDN and from the CDN to your users.With TLS offloading, your server only needs to encrypt the content for each CDN node, not for every individual user. This reduces the workload on your server.Here’s a simple breakdown of how it works:Your server encrypts the content once and sends it to the CDN.The CDN caches this encrypted content.When a user requests the content, the CDN serves it directly to them, handling all encryption and reducing the need to repeatedly contact your server.Without a CDN, your server would have to encrypt and send content to each user individually, which can slow things down. With a CDN, your server encrypts the content once for the CDN. The CDN then takes over, encrypting and serving the content to all users, speeding up the process and reducing the load on your server.Figure 1: Comparison of how content is served with TLS on the web server (left) vs on CDN (right)Benefits of “Offloading” TLS to a CDNOffloading TLS to a CDN can improve your infrastructure with improved performance, better caching, and simplified TLS management.Increased PerformanceWhen establishing a TLS connection, the client and server must exchange information to negotiate a session key. This exchange involves four messages being sent over the network, as shown in Figure 2. The higher the latency between the two participants, the longer it takes to establish the connection. CDN nodes are typically closer to the client, resulting in lower latency and faster connection establishment.As mentioned above, CDN nodes handle all the encryption tasks. This frees up your server’s resources for other tasks and allows you to simplify its code base.Figure 2: TLS handshakeImproved CachingIf your data is encrypted, the CDN can’t cache it. A single file will look different from the CDN nodes for every new TLS connection, eliminating the CDN benefits (Figure 3). If the CDN holds the certificates, it can negotiate encryption with the clients and collect the files from your server in plaintext. This allows the CDN to cache the content efficiently and serve it faster to users.Figure 3: TLS and CDN caching comparedSimplified TLS ManagementThe CDN takes care of maintenance tasks such as certificate issuing, rotation, and auto-renewal. With the CDN managing TLS, your server’s code base can be simplified, and you no longer need to worry about potential TLS updates in the future.TLS Encryption with Gcore CDNWith the Gcore CDN we don’t just take care of your TLS encryption, but also file compression and DNS lookups. This way, you can unburden your servers from non-functional requirements, which leads to smaller, easier-to-maintain code bases, lower CPU, memory, and traffic impact, and a lower workload for the teams managing those servers.Gcore CDN offers two TLS offloading options:Free Let’s Encrypt certificates with automatic validation, an effective and efficient choice for simple security needsPaid custom certificates, ideal if your TLS setup has more complex requirementsHow to Enable HTTPS with a Free Let’s Encrypt CertificateSetting up HTTPS for your website is quick, easy, and free. First, make sure you have a Gcore CDN resource for your website. If you haven’t created one yet, you can do so in the Gcore Customer Portal by clicking Create CDN resource in the top-right of the window (Figure 4) and following the setup wizard. You’ll be asked to update your DNS records so they point to the Gcore CDN, allowing Gcore to issue the certificates later.Figure 4: Create CDN resourceNext, open the resource settings by selecting your CDN resource from the list in the center (Figure 5).Figure 5: Select the CDN resourceEnable HTTPS in the resource settings, as shown in Figure 6:Select SSL in the left navigationClick the Enable HTTPS checkboxClick Get SSL certificateFigure 6: Get an SSL certificateYour certificate will usually be issued within 30 minutes.Our Commitment to Online SecurityAt Gcore, we’re committed to making the internet secure for everyone. As part of this mission, we offer free CDN and free TLS certificates. Take advantage and protect your resources efficiently for free!Get TLS encryption on Gcore CDN free

How to Detect and Stop Bad Bots

A bot, short for “robot,” is a software program that can perform tasks automatically, quickly, and efficiently. Both good bots and bad bots exist; Googlebot facilitates web page indexing, but LizardStresser orchestrates DDoS attacks. Because good and bad bots share certain traits, distinguishing between them can be tricky unless the correct bot detection techniques are used. In this article, we examine the evolution of bot detection techniques in response to the ever-changing threat landscape and discuss how bots can be detected and, when desirable, stopped.What Is Bot Detection?Bot detection is the process of identifying and distinguishing between legitimate human users, good bots, and bad bots. Because bots can mimic certain legitimate user behaviors, such as mouse movements and keystrokes, cybersecurity professionals and business leaders should implement bot detection as an integral component of their security strategy. Otherwise, you could end up with misleading analytics, compromised user experiences, and potential security breaches that can harm your organization’s reputation and bottom line.Bot detection helps to mitigate malicious bot activities such as unethical web scraping, spamming, account takeover, click fraud, and DDoS attacks, without interfering with good bots such as website uptime monitors. Effective bot detection enhances cybersecurity and improves the web user’s overall experience.Botnet Detection TechniquesOver the decades, different botnet mitigation techniques have been developed to deal with the challenges of stopping bad bots while allowing good bots to continue their activities. These techniques typically involve identifying the command-and-control infrastructure coordinating the botnet activities. However, since botnets keep evolving to bypass mitigation measures, new and better botnet detection and mitigation strategies are continuously being developed.Let’s examine botnet detection techniques. We’ll start with the oldest and then look at contemporary techniques. However, new techniques build on the old, and all these techniques still play a part in botnet detection today.Intrusion Detection SystemsFigure 1: How a basic intrusion detection system worksIntrusion detection systems (IDS) emerged in the late 1980s to monitor and analyze network traffic for security incidents like unauthorized access and policy violations. IDS can detect threats, such as botnets, and alert security teams. Intrusion prevention systems (IPS) can proactively mitigate detected threats. Modern IDPS (intrusion detection and prevention systems) combine IDS and IPS functions.IDS is trained on data from sources like network traffic, system logs, and application activity. Botnet-focused IDS can be anomaly-based (monitoring abnormal behaviors) or signature-based (matching patterns with known botnets).When a potential botnet is detected, the IDS generates alerts or notifications based on severity. Depending on cybersecurity policies, the IDS may block traffic, isolate systems, or alert security teams. IDS also generates incident logs and reports, detailing the time of incidents, detected threats, countermeasures, and recommendations for improvement.Intrusion detection systems can be grouped into six types:Network-Based Intrusion Detection Systems (NIDS): These monitor real-time network traffic and analyze packets on network segments or devices to detect attacks like DoS, port scanning, and reconnaissance.Protocol-Based Intrusion Detection Systems (PIDS): A type of NIDS that targets specific network communication protocols (e.g., P2P, HTTP, IRC) to protect against intrusion and policy violations. PIDS is limited in scope.Machine Learning-Based Intrusion Detection Systems (ML-IDS): Subset of NIDS using machine learning algorithms to detect network intrusions and malicious activities by learning from historical data. ML-IDS is more efficient than traditional rule-based systems but requires fine-tuning to minimize false positives.Host-Based Intrusion Detection Systems (HIDS): Monitor the computer infrastructure they are installed on (e.g., computers, servers) to safeguard against attacks. They gather data, analyze traffic, and log suspicious behavior, providing insights into system health and security. HIDS is an approach that’s most suitable for small teams with lean overheads.Hybrid Intrusion Detection Systems: Combine different detection techniques (e.g., NIDS, HIDS, anomaly-based, signature-based) in a single framework to effectively detect botnet activity and provide insightful data. Problematically, they create a single point of failure and are complex to troubleshoot.Multi-Layered Intrusion Detection Systems: These systems combine different detection techniques (e.g., NIDS, HIDS, anomaly-based, signature-based) in a layered approach, with each IDS as a separate component. They eliminate a single point of failure and simplify troubleshooting but complicate setup, management, and reporting.To summarize, intrusion detection systems (IDS) enhance network security by monitoring and analyzing traffic to detect potential threats, providing valuable insights and real-time response capabilities. However, they can produce false positives, require ongoing maintenance and fine-tuning, and may be complex to manage and integrate into existing security frameworks.HoneynetFirst used around the year 2000, a honeynet is a network of traps or decoy networks (honeypots) set up with built-in vulnerabilities to attract cyberattacks. A typical honeynet comprises two or more honeypots. Honeynets aid in botnet detection by deliberately exposing vulnerabilities that attract malicious attacks. This deception technique allows botnet attacks to be studied in a controlled environment or managed and stopped, as needed.Figure 2: Honeynet setupAs such, there are two main types of honeynets: research honeynets and production honeynets. Research honeynets are primarily set up to study attack vector tactics, techniques, and procedures, while production honeynets are deployed within production environments.Despite their effectiveness, honeynets have limitations, such as setup complexity, limited network coverage, and high maintenance overhead, especially for high-capacity setups. Additionally, honeynets can sometimes be detected, bypassed, armed, and deployed against the production network itself.DNS-Based Botnet DetectionFigure 3: DNS-based botnet detectionAround 2005, the DNS-based botnet detection technique started to gain popularity. DNS-based botnet detection works by monitoring the way computers use the Domain Name System (DNS) to find websites. When you enter a website address into your browser, your computer uses DNS to find the numerical IP address that corresponds to that website. Botnets, which are networks of infected computers controlled by cybercriminals, often need to communicate with the attackers’ servers to receive instructions. They use DNS to find these servers.A botnet detection system monitors all DNS requests made by network computers. They analyze which domain names are being requested and how often. Since botnets often use unusual domain names that people don’t typically visit, the systems look for patterns that indicate suspicious activity, such as frequent requests to these strange or newly created domains. They can then block the requests to these malicious domains, preventing the infected computers from communicating with the cybercriminals.Although they provide real-time detection, network-wide coverage, low false-positive rates, and threat intelligence gathering, they are prone to evasion techniques and are limited by their reliance on external threat intelligence sources for domain reputation data.Comparison of Botnet Detection TechniquesHere’s how these three botnet detection techniques compare.FeatureIntrusion Detection Systems (IDS)HoneynetDNS-Based Botnet DetectionDefinitionNetwork security tools monitor and analyze network traffic for potential threatsNetwork of traps or decoy networks designed to attract cyberattacksTechnique monitoring and analyzing DNS traffic for botnet activityDetection focusNetwork traffic, system logs, and application activityCyberattackers’ behavior and tacticsDNS traffic patterns, requests, and responsesDetection methodsSignature-based, anomaly-based, machine learningDeception through vulnerabilitiesDomain reputation checks, anomaly detectionData collectedNetwork traffic, system logs, application activityAttack interactions with honeypotsDNS traffic, requests, responsesAlerting and responseGenerates alerts, blocks traffic, isolates systemsStudies attacks, handles malicious interactionsBlocks connections, redirects to sinkholes, alertsUse casesPrevents unauthorized access, breaches, policy violationsStudies attack tactics, gathers threat intelligenceReal-time botnet detection, low false positivesComplexityVaries based on IDS type (NIDS, HIDS, hybrid, multi-layered)Moderate to high due to setup and maintenanceModerate, relies on DNS traffic analysisEffectivenessEffective for detecting network-based threatsEffective for studying attacks, gathering threat intelEffective for real-time botnet detectionLimitationsCan be bypassed by sophisticated attacksSetup complexity, limited network coverageProne to evasion techniques, reliance on external dataDeploymentNetwork-wide, host-based, hybrid, multi-layeredControlled environment, production networksDNS infrastructure monitoringPopularityWidely used in cybersecurityLess common due to complexityIncreasing popularityFuture evolutionEvolving to integrate AI, threat intelligenceEvolving to address evasion techniquesEvolving to handle DNS tunnelingManagement overheadVaried based on IDS type and deploymentHigh for setup, maintenance, and monitoringModerate for DNS traffic analysisHow to Stop BotnetsNow we know how undesirable botnets are detected, let’s turn to how they can be stopped. Three main options exist: CAPTCHA, rate limiting, and bot protection.A. JS Challenges/CAPTCHAOne way to stop bad bot activity is by implementing JS Challenges and CAPTCHA on your websites or web applications. Both are effective security mechanisms used to protect against malicious bots, automated scripts, and other unauthorized automated activities, such as web scraping.Figure 4: CAPTCHAGcore provides JS Challenge and JS CAPTCHA solutions as part of Gcore WAAP. First, a JS challenge runs a small piece of JavaScript code in the user’s browser, which a bot typically cannot execute. This code checks for typical human behavior and browser characteristics to ensure the request comes from a legitimate user. Next, a CAPTCHA presents a task that is easy for humans but difficult for bots, such as identifying objects in images or solving simple puzzles. By completing these tasks, users prove they are human, thereby preventing automated systems from accessing or abusing web services.But there’s a downside: CAPTCHAs do not distinguish between beneficial bots (such as search engine crawlers or monitoring tools) and malicious bots. They can impede good bots from performing their intended functions. To allow good bots while still protecting against malicious ones, website administrators need to create exceptions or use alternative verification methods that can recognize and permit trusted bots. Gcore manages this process with our WAAP customers to ensure good bots continue to function effectively.B. Rate LimitingFigure 5: Rate LimitingA key characteristic of bots is their ability to automate and rapidly scale tasks. For example, bots can fill and submit forms much faster than humans, sending a large number of requests to the server and receiving an equally large number of responses. This can drain server resources and degrade site performance.Rate limiting controls the number of requests an IP address or IP range can make to a resource within a certain timeframe. This method mitigates bad bot activity on websites or web applications. Good bots don’t engage in this kind of behavior, so there’s not much risk of stopping their activity with a rate limiter.Gcore Rate Limiter protects your websites and web applications from excessive requests that signal bad bot activity. You can specify a set of rules dictating how many requests are allowed per IP address per second. Once this limit is exceeded, the requester will receive an HTTP 429 (Too Many Requests) error message.Stop Bad Bots with Gcore WAAPWhile bot detection techniques such as honeynets, DNS-based bot detectors, and intrusion detection systems (IDSs) are effective in their own right, a hybrid or multi-layered bot detection approach is the most accurate way to detect bot activity. Gcore WAAP (Web Application Firewall + API Protection) is the ultimate all-in-one bot detection and protection solution for your websites and web applications. Gcore WAAP incorporates bot protection with a web application firewall, API security, and advanced DDoS protection to offer enhanced enterprise-grade security.We protect against threats including and beyond the OWASP Top 10, addressing unpatched vulnerabilities and zero-day attacks by leveraging machine learning technologies. With Gcore WAAP, you enjoy API-specific protection and security against credential stuffing, account takeover, brute force attacks, and L7 DDoS attacks.Gcore WAAP is scalable to meet your needs, regardless of industry. It is also easy to deploy—no additional hardware, software, or changes in the code are required on your part. Once you send a request, Gcore will start protecting your web resources immediately. Request Gcore WAAP today and enjoy bot-free websites and web applications.ConclusionDetecting and stopping bad bots involves a combination of advanced techniques tailored to identify and mitigate malicious activities while allowing beneficial bots to operate. Implementing a multi-layered bot detection strategy, such as Gcore WAAP, ensures comprehensive protection against various threats while maintaining website performance and user experience.Gcore WAAP is integrated into Gcore’s global infrastructure, operating on 180+ global points of presence in Tier III and IV data centers, ensuring optimal performance, low latency worldwide, and outstanding security at the network’s edge. Secure your web applications and APIs against the most sophisticated cyber threats to safeguard your business’ reputation.Discover Gcore WAAP

Subscribe
to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.