Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
Under attack?

Products

Solutions

Resources

Partners

Why Gcore

  1. Home
  2. Blog
  3. Bare Metal vs. VM-based Kubernetes Clusters: A Comprehensive Performance Analysis

Bare Metal vs. VM-based Kubernetes Clusters: A Comprehensive Performance Analysis

  • By Gcore
  • July 4, 2023
  • 7 min read
Bare Metal vs. VM-based Kubernetes Clusters: A Comprehensive Performance Analysis

In today’s digitally driven world, applications are evolving rapidly, and efficient and scalable solutions are required. Kubernetes is an open-source platform designed to automate deploying, scaling, and managing containerized applications. It provides a resilient framework for running distributed systems and handling various tasks geared toward the growth and maintenance of application services. In this blog post, we’ll compare bare metal Kubernetes with traditional VM-based clusters, specifically in terms of latency and performance. Knowledge of their respective advantages and limitations is essential for those tasked with selecting technologies for their IT infrastructure.

Bare Metal vs. VM Servers

Kubernetes can work with a cluster of bare metal servers and virtual-machine (VM) based servers. Bare metal refers to physical servers dedicated to a single tenant—essentially, the bare hardware, without the layer of virtualization often used in cloud computing. On the other hand, VM refers to environments where multiple virtual machines, each running their operating system, share the resources of a single physical host:

Figure 1: Bare metal and VM servers

As we proceed further into this comparison, it’s essential to understand the two foundational concepts at its core: containers and virtual machines. Kubernetes is a container orchestration platform that assigns a group of containers to its worker nodes—bare metal servers or virtual machines.

Understanding Containers and Virtual Machines

Containers are standalone, executable software packages that include everything needed to run a piece of software. They contain the code, runtime, system tools, libraries, and settings, effectively encapsulating the application and its environment. Containers share the host system’s OS kernel, making them lightweight and quick to start.

Virtual Machines (VMs,) on the other hand, are an abstraction of physical hardware, turning one server into many. Each VM includes a full copy of an operating system, the application, necessary binaries, and libraries. VMs can also be slow to boot compared to containers but provide strong isolation between different VMs on the same host.

Figure 2 shows the similarities and differences between containers and VMs.

Figure 2: VMs and containers

Both containers and VMs come with benefits and are appropriate for specific use cases. Containers are best suited for microservices, stateless applications, and cases where rapid scalability is required. On the other hand, VMs are ideal for legacy applications and applications that require all the resources and functionalities of an OS, including running applications unsuitable for a containerized environment.

The main focus of Kubernetes is automating deployment, scaling, and management of application containers. As mentioned, Kubernetes supports running these containerized workloads on both bare metal servers and VMs. Let’s next examine both technologies and explore how Kubernetes runs on each of them.

Bare Metal Kubernetes Clusters

In the context of Kubernetes, bare metal implies that Kubernetes is running directly on the hardware without an intermediary layer of virtual machines, as illustrated in Figure 3.

Figure 3: Containers on bare metal servers

Benefits and Use Cases of Bare Metal Kubernetes Clusters

Bare metal Kubernetes clusters leverage the inherent strengths of Kubernetes while simultaneously exploiting the considerable benefits of dedicated hardware. This approach eliminates the overhead created by virtualization (which can cause increased complexity and potential for slowdowns), often resulting in superior performance and lower latency, making it an attractive option for high-performance workloads.

This approach is particularly beneficial for applications that require intensive computational resources or need to handle large volumes of data. By cutting out the VM layer, bare metal Kubernetes clusters reduce the overhead that can sometimes limit the performance of such demanding applications.

Drawbacks of Bare Metal Kubernetes Clusters

However, nothing is without its drawbacks. While bare metal clusters can offer impressive performance, they traditionally lack some of the features provided by VM-based solutions, such as the ability to quickly and easily create, remove, or migrate worker nodes. They also require a higher degree of management compared to their VM counterparts, although many providers take care of the management aspect, removing this concern for the customer.

Virtual Machine Kubernetes Clusters

In contrast to bare metal, VM-based clusters operate by deploying Kubernetes worker nodes on virtual machines. Each of these VMs runs its own operating system and shares the resources of a single physical host, as illustrated in Figure 4:

Figure 4: Containers on VM servers

Benefits and Use Cases of VM Kubernetes Clusters

The significant advantage of VM-based clusters lies in their flexibility and isolation compared to bare metal Kubernetes clusters. VMs can be easily created, removed, and migrated without affecting the physical host or other VMs. This results in a highly flexible and scalable environment that can adapt to changing needs quickly. Furthermore, the isolation provided by VMs adds a layer of security as it limits the potential impact of system failures or security breaches. (With that said, many experts believe VMs are less secure than BM, because some VM exploits allow one VM to read the address space of another.)

Drawbacks of VM Kubernetes Clusters

However, VM Kubernetes clusters come with drawbacks. Let’s take a look at them:

  • Adding a VM layer introduces additional overhead, impacting performance and latency.
  • The scheduling and execution of containerized apps inside VM worker nodes can introduce latency as requests must traverse the virtualization layer.
  • VMs typically use network disks, which introduces additional latency due to network performance limitations.
  • The performance of virtual network adapters used by VMs usually can’t match the capabilities of physical ones, further contributing to latency.

Comparing Bare Metal and VM Kubernetes Clusters

As we’ve seen, BM and VM Kubernetes clusters have their own benefits, use cases, and disadvantages. Let’s compare the technologies directly in two areas—speed and network performance, and security—and then summarize each method in a table.

Comparing Speed and Network Performance

Bare metal servers (BMs) offer superior performance to VMs as they allow direct access to local disks, which could be configured as SSD raids for optimum speed and efficiency. In addition, BMs utilize physical network adapters that significantly outperform their virtual counterparts. Therefore, compared to VMs, you can expect better disk and network performance when using BMs, leading to reduced latency and enhanced overall system performance.

Comparing Security

While it is true that some organizations might opt for VM-based Kubernetes due to perceived benefits such as isolation and easy scalability, this doesn’t necessarily indicate a superior security model. Some experts argue that bare metal Kubernetes clusters may offer better security because they operate without the shared tenancy characteristic of virtual machines, and this lack of multitenancy can increase security. As no other customer’s code is running on the same hardware, even on a different VM, the risks of potential cross-contamination or security breaches are significantly mitigated.

In addition, without a hypervisor layer, bare metal environments have a smaller attack surface. The hypervisor in VMs presents an additional layer that attackers could potentially exploit. Eliminating this layer in a bare metal setup reduces the number of potential entry points for malicious activity.

That being said, the security of either a bare metal or a VM-based setup largely depends on how it’s managed. Good practices, regular patching, proper configuration, and advanced security tools are crucial in both cases.

Comparison Table of BM and VM Kubernetes Clusters

Let’s summarize the strengths, weaknesses, and use cases of both methods in the following table:

 StrengthsWeaknessesUse Cases
Bare metal KubernetesHigh performanceLower latencyFull utilization of hardwareRequires higher degree of managementFewer features compared to VM-based solutionsHigh-performance workloadsData-intensive applicationsComputationally intensive and low-latency tasks
VM-based Kubernetes clustersFlexibilityQuick build up of new instancesOverhead that can impact performance and latencyRisk of noisy neighbor effectEnvironments needing quick and easy scalabilitySave on cost by using smaller flavors (part of server resources)

Furthermore, it is possible to compare both cluster types with performance and operational point of view:

 Network PerformanceStorage PerformanceCPU PerformanceBoot-up Times
Bare metal KubernetesHighHighHighSlower
VM-based ClustersModerateModerateModerateQuick

Performance and Latency Comparison

Let’s directly compare performance and latency between bare metal and VM-based Kubernetes clusters. For many, these factors are the most important when deciding whether to opt for BM or VM.

Performance Comparison

Performance can be quantified in many ways, but in the context of the cloud, it generally relates to how efficiently a system can execute tasks. In the case of bare metal clusters, removing the overhead of the VM layer allows for the hardware’s full potential to be harnessed.

One practical application could be a high-demand application like a data analytics platform. When running such an application on a bare metal cluster, you may find that tasks are completed faster due to reduced overhead, and the cluster can handle more data in less time than a VM-based cluster.

On the other hand, VM-based clusters, due to the virtualization layer and its associated overhead, might not offer the same level of raw performance as bare metal ones. However, VM-based clusters excel in flexibility and scalability, which can also be aspects of performance, depending on your specific needs.

Latency Comparison

Regarding latency, bare metal clusters have an edge due to the absence of a virtualization layer. Latency can be critical for applications requiring a real-time response, such as IoT devices, gaming or real-time analytics. In this case, a bare metal Kubernetes cluster may provide a lower-latency solution, ensuring data is processed and returned quickly.

In contrast, VM-based clusters might exhibit higher latency due to the additional steps introduced by the virtualization layer. While these extra steps allow VMs to provide features such as flexibility, they also add to the time it takes to process and return data.

To illustrate the differences in performance and latency between bare metal Kubernetes and VM-based clusters, we can work on some comparative data. The following table summarizes typical results one might expect, assuming similar configurations and workload patterns:

 Bare metal KubernetesVM-based clusters
Data Processing Speed (TB/hr)HigherLower
Network Latency (ms)LowerHigher
Disk Latency (ms)LowerHigher

Of course, these comparisons are not absolute. The actual performance and latency will depend on many factors, including the specific configurations, workloads, and the capabilities of the underlying hardware. In some cases, the advantages of VM-based clusters, such as their scalability, may outweigh the raw performance advantage of bare metal Kubernetes.

In the next section, we’ll discuss how Gcore’s Managed Kubernetes on Bare Metal offers an enhanced solution that combines the strengths of both approaches.

The Gcore Advantage: Gcore Managed Kubernetes on Bare Metal

In an era marked by an intense drive for performance optimization and efficient resource management, Gcore presents its Managed Kubernetes on Bare Metal service. This fully managed solution is designed to cater to the unique needs of businesses seeking the power and speed of Gcore Bare Metal with the professional management and support of an experienced team.

Gcore Managed Kubernetes on Bare Metal stands out from the competition:

  • Fully leverage the power and potential of Kubernetes without the overhead introduced by virtualization: This results in enhanced performance and lower latency, bringing tangible benefits for applications requiring real-time responses or handling heavy workloads.
  • Combine the benefits of bare metal with the convenience of a managed service: The management of the Kubernetes environment is handled by Gcore’s team of experts, allowing your team to focus on developing and deploying applications rather than the nuances of Kubernetes management.

Whether you’re a startup looking to get your first application off the ground or an established business looking to optimize your existing systems, Gcore’s Managed Kubernetes on Bare Metal could be the solution you’ve been seeking for performance and operational effectiveness.

Conclusion

In the ever-evolving world of technology, our infrastructure choices can dramatically impact the success of our applications and, ultimately, our businesses. The comparison between bare metal Kubernetes and VM-based clusters is one of these choices, with each offering its own set of advantages and trade-offs. Bare metal Kubernetes, with its direct access to the underlying hardware, offers high performance and low latency. On the other hand, VM-based clusters bring the benefits of flexibility and easy scalability.

But why compromise when you can have the best of both worlds? Gcore’s Managed Kubernetes on Bare Metal provides the performance benefits of Bare Metal Kubernetes as a fully managed solution. It offers an environment that safeguards against disruptions, ensuring the smooth operation of your applications while also providing a powerful and convenient platform.

If you’re considering your options to be successful in the cloud, we invite you to explore Gcore Managed Kubernetes on Bare Metal further. Discover the Gcore advantage for yourself and see how it can take your applications to the next level.

Related Articles

5 ways to keep gaming customers engaged with optimal performance

Nothing frustrates a gamer more than lag, stuttering, or server crashes. When technical issues interfere with gameplay, it can be a deal breaker. Players know that the difference between winning and losing should be down to a player’s skill, not lag, latency issues, or slow connection speed—and they want gaming companies to make that possible every time they play.And gamers aren’t shy about expressing their opinion if a game hasn’t met their expectations. A game can live or die by word-of-mouth, and, in a highly competitive industry, gamers are more than happy to spend their time and money elsewhere. A huge 78% of gamers have “rage-quit” a game due to latency issues.That’s why reliable infrastructure is crucial for your gaming offering. A solid foundation is good for your bottom line and your reputation and, most importantly, provides a great gaming experience for customers, keeping them happy, loyal, and engaged. This article suggests five technologies to boost player engagement in real-world gaming scenarios.The technology powering seamless gaming experiencesHaving the right technology behind the scenes is essential to deliver a smooth, high-performance gaming experience. From optimizing game deployment and content delivery to enabling seamless multiplayer scalability, these technologies work together to reduce latency, prevent server overloads, and guarantee fast, reliable connections.Bare Metal Servers provide dedicated compute power for high-performing massive multiplayer games without virtualization overhead.CDN solutions reduce download times and minimize patch distribution delays, allowing players to get into the action faster.Managed Kubernetes simplifies multiplayer game scaling, handling sudden spikes in player activity.Load Balancers distribute traffic intelligently, preventing server overload during peak times.Edge Cloud reduces latency for real-time interactions, improving responsiveness for multiplayer gaming.Let’s look at five real-world scenarios illustrating how the right infrastructure can significantly enhance customer experience—leading to smooth, high-performance gaming, even during peak demand.#1 Running massive multiplayer games with bare metal serversImagine a multiplayer FPS (first-person shooter gaming) game studio that’s preparing for launch and needs low-latency, high-performance infrastructure to handle real-time player interactions. They can strategically deploy Gcore Bare Metal servers across global locations, reducing ping times and providing smooth gameplay.Benefit: Dedicated bare metal resources deliver consistent performance, eliminating lag spikes and server crashes during peak hours. Stable connections and seamless playing are assured for precision gameplay.#2 Seamless game updates and patch delivery with CDN integrationLet’s say you have a game that regularly pushes extensive updates to millions of players worldwide. Instead of overwhelming origin servers, they can use Gcore CDN to cache and distribute patches, reducing download times and preventing bottlenecks.Benefit: Faster updates for players, reduced server tension, and seamless game launches and updates.#3 Scaling multiplayer games with Managed KubernetesAfter a big update, a game may experience a sudden spike in the number of players. With Gcore Managed Kubernetes, the game autoscales its infrastructure, dynamically adjusting resources to meet player demand without downtime.Benefit: Elastic, cost-efficient scaling keeps matchmaking fast and smooth, even under heavy loads.#4 Load balancing for high-availability game serversAn online multiplayer game with a global base requires low latency and high availability. Gcore Load Balancers distribute traffic across multiple regional server clusters, reducing ping times and preventing server congestion during peak hours.Benefit: Consistent, lag-free gameplay with improved regional connectivity and failover protection.#5 Supporting live events and seasonal game launchesIn the case of a gaming company hosting a global in-game event, attracting millions of players simultaneously, leveraging Gcore CDN, Load Balancers, and autoscaling cloud infrastructure can prevent crashes and provide a seamless and uninterrupted experience.Benefit: Players enjoy smooth, real-time participation while the infrastructure is stable under extreme load.Building customer loyalty with reliable gaming infrastructureIn a challenging climate, focusing on maintaining customer happiness and loyalty is vital. The most foolproof way to deliver this is by investing in reliable and secure infrastructure behind the scenes. With infrastructure that’s both scalable and high-performing, you can deliver uninterrupted, seamless experiences that keep players engaged and satisfied.Since its foundation in 2014, Gcore has been a reliable partner for game studios looking to deliver seamless, high-performance gaming experiences worldwide, including Nitrado, Saber, and Wargaming. If you’d like to learn more about our global infrastructure and how it provides a scalable, high-performance solution for game distribution and real-time games, get in touch.Talk to our gaming infrastructure experts

How cloud infrastructure maximizes efficiency in the gaming industry

The gaming industry is currently facing several challenges, with many companies having laid off staff over the past year due to rising development costs and a fall in product demand post-pandemic. These difficult circumstances mean it’s more important than ever for gaming firms of all sizes to maximize efficiency and keep costs down. One way companies can do this is by implementing reliable infrastructure that supports the speedy development of new games.This article explores how dependable cloud infrastructure at the edge—including virtual machines, bare metal, and GPUs—helps gaming companies work more efficiently. Edge computing allows developers to build, test, and deploy games faster while minimizing latency, reducing server costs, and handling complex rendering and AI workloads.The key benefits of edge cloud infrastructure for gamingReliable cloud infrastructure benefits gaming companies in a variety of ways. It’s a replacement for relying on outdated arrangements such as proprietary on-premises data centers, which lack flexibility, have limited scalability, require significant upfront investment, and need teams that are fully dedicated to their maintenance and management. Cloud compute resources, including virtual machines, bare metal servers, and GPUs, can support your game development and testing more cost-effectively, keeping your gaming company competitive in the market and cost efficient.Here’s how reliable cloud infrastructure can benefit your business:Speeds up development cycles: Cloud-based infrastructure accelerates game builds, testing, and deployment by providing on-demand access to high-performance compute resources. Developers can run several testing environments and collaborate from anywhere.Scales on demand: From indie studios launching a first title to major AAA developers handling millions of players, cloud solutions can scale resources instantly. Storage options and load balancing enable infrastructure to adapt to player demand, preventing performance issues during peak times while optimizing costs during off-peak periods.Offers low-latency performance: Cloud solutions reduce lag, optimize the experience for developers and end-users by deploying servers close to players, and improve their in-game experience.Delivers high-performance compute: Bare Metal servers and GPU instances deliver the power required for game development by providing dedicated resources. This enables faster rendering, complex simulations, and seamless real-time processing for graphics-intensive applications, leading to smooth gameplay experiences and faster iteration cycles.Maximizes cost efficiency: Flexible pricing models help studios optimize costs while maintaining high performance. Pay-as-you-go plans mean companies only pay for the resources used. Commitment plans that give discounts for use cases that require consistent/planned capacity are also available.How Gcore cloud infrastructure works: real-life examplesGcore cloud infrastructure can be helpful in many common scenarios for developers. Here are some real-world examples demonstrating how Gcore virtual machines and GPUs can help:Example 1: Faster game building and testing with scalable virtual machinesLet’s say a game studio developing a cross-platform game needs to compile large amounts of code and assets quickly. By leveraging Gcore’s Virtual Machines, they can create automated CI/CD pipelines that speed up game builds and testing across different environments, reducing wait times. Scalable virtual machines allow developers to spin up multiple test environments on demand, running compatibility and performance tests simultaneously.Example 2: High-performance graphics rendering with GPU computeVisually rich games (like open-world role-playing games) need to render complex 3D environments efficiently. Instead of investing in expensive local hardware, they can use Gcore’s GPU infrastructure to accelerate rendering and AI-powered animation workflows. Access to powerful GPUs without upfront investment enables faster iteration of visual assets and machine-learning-driven game enhancements.If your business faces rendering challenges, one of our experts can advise you on the most suitable cloud infrastructure package.Partnering for success: why gaming companies choose GcoreIn a challenging gaming industry climate, it’s vital to have the right tools and solutions at your disposal. Cloud infrastructure at the edge can significantly enhance game development efficiency for gaming businesses of all sizes.Gcore was founded in 2014 for gamers, by gamers, and we have been a trusted partner to global gaming companies including Nitrado, Saber, and Wargaming since day one. If you’d like to learn more about our gaming industry expertise and how our cloud infrastructure can help you operate in a more efficient and cost effective way, get in touch.Talk to us about your gaming cloud infrastructure needs

Edge cloud trends 2025: AI, big data, and security

Edge cloud is a distributed computing model that brings cloud resources like compute, storage, and networking closer to end users and devices. Instead of relying on centralized data centers, edge cloud infrastructure processes data at the network’s edge, reducing latency and improving performance for real-time applications.In 2025, the edge cloud landscape will evolve even further, shaping industries from gaming and finance to healthcare and manufacturing. But what are the key trends driving this transformation? In this article, we’ll explore five key trends in edge computing for 2025 and explain how the technology helps with pressing issues in key industries. Read on to discover whether it’s time for your company to adopt edge cloud computing.#1 Edge computing is integral to modern infrastructureEdge computing is on the rise and is set to become an indispensable technology across industries. By the end of this year, at least 40% of larger enterprises are expected to have adopted edge computing as part of their IT infrastructure. And this trend shows no signs of slowing. By the end of 2028, worldwide spending for edge computing is anticipated to reach $378 billion. That’s almost a 50% increase from 2024. There’s no question that edge computing is rapidly becoming integral to modern businesses.#2 Edge computing will power AI-driven, real-time workloadsAs real-time digital experiences become the norm, the demand for edge computing is accelerating. From video streaming and immersive XR applications to AI-powered gaming and financial trading, industries are pushing the limits of latency-sensitive workloads. Edge cloud computing provides the necessary infrastructure to process data closer to users, meeting their demands for performance and responsiveness. AI inference will become part of all kinds of applications, and edge computing will deliver faster responses to users than ever before.New AI-powered features in mobile gaming are driving greater demand for edge computing. While game streaming services haven’t yet gained widespread adoption, the high computational demands of AI inference could change that. Since running a large language model (LLM) efficiently on a smartphone is still impractical, these games require high-performance support from edge infrastructure to deliver a smooth experience.Multiplayer games require ultra-low latency for a smooth, real-time experience. With edge computing, game providers can deploy servers closer to players, reducing lag and ensuring high-performance gameplay. Because edge computing is decentralized, it also makes it easier to scale gaming platforms as player demand grows.The same advantage applies to high-frequency trading, where milliseconds can determine profitability. Traders have long benefited from placing servers near financial markets, and edge computing further simplifies deploying infrastructure close to preferred exchanges, optimizing trade execution speeds.#3 Edge computing will handle big dataEmerging real-time applications generate massive volumes of data. IoT devices, stock exchanges, and GenAI models all produce and rely on vast datasets, requiring efficient processing solutions.Traditionally, organizations have managed large-scale data ingestion through horizontal scaling in cloud computing. Edge computing is the next logical step, enabling big data workloads to be processed closer to their source. This distributed approach accelerates data processing, delivering faster insights and improved performance even when handling huge quantities of data.#4 Edge computing will simplify data sovereigntyThe concept of data sovereignty states that data is subject to the same laws and regulations as the user who created it. For example, the GDPR in Europe requires organizations to store their citizens’ and residents’ data on servers subject to European laws. This can cause headaches for companies working with a centralized cloud, since they may have to comply with a complex web of fast-changing data sovereignty laws. Put simply: cloud location matters.With data privacy regulations on the rise, edge computing is emerging as a key technology to simplify compliance. Edge cloud means allows running distributed server networks and geofencing data to servers in specific countries. The result is that companies can scale globally without worrying about compliance, since edge cloud companies like Gcore automate most of the regulatory requirement processes.#5 Edge computing will improve securityEdge computing is crucial to solving the issues of a globally connected world, but its security story has until now been a double-edged sword. On the one hand, the edge ensures data doesn’t need to travel great distances on public networks, where it can be exposed to malicious attacks. On the other hand, central data centers are much easier to secure than a distributed server network. More servers mean a higher potential for one to be compromised, making it a potentially risky choice for privacy-sensitive workloads in healthcare and finance.However, cloud providers are starting to add features to their solutions that bring edge security into line with traditional cloud resources. Secure hardware enclaves and encrypted data transmissions deliver end-to-end security, so data will never be accessible in cleartext to an edge location provider or other third parties. If, for any reason, these encryption mechanisms should fail, AI-driven threat scanners can detect and notify quickly.If your business is looking to adopt edge cloud while prioritizing security, look for a provider that specializes in both. Avoid solutions where security is an afterthought or a bolt-on. Gcore cloud servers integrate seamlessly with Gcore Edge Security solutions, so your servers are protected to the highest levels at the click of a button.Unlock the next wave of edge computing with GcoreThe trend is clear: Internet-enabled devices are rapidly entering every part of our lives. This raises the bar for performance and security, and edge cloud computing delivers solutions to meet these new requirements. Distributed data processing means GenAI models can scale efficiently, and location-independent deployments enable high-performance real-time workloads from high-frequency trading to XR gaming to IoT.At Gcore, we provide a global edge cloud platform designed to meet the performance, scalability, and security demands of modern businesses. With over 180 points of presence worldwide, our infrastructure ensures ultra-low latency for AI-powered applications, real-time gaming, big data workloads, and more. Our edge solutions help businesses navigate evolving data sovereignty regulations by enabling localized data processing for global operations. And with built-in security features like DDoS protection, WAAP, and AI-driven threat detection, you leverage the full potential of edge computing without compromising on security.Ready to learn more about why edge cloud matters? Dive into our blogs on cloud data sovereignty.Get in touch to discuss your edge cloud 2025 goals

Gcore 2024 round-up: 10 highlights from our 10th year

It’s been a busy and exciting year here at Gcore, not least because we celebrated our 10th anniversary back in February. Starting in 2014 with a focus on gaming, Gcore is now a global edge AI, cloud, network, and security solutions provider, supporting businesses from a wide range of industries worldwide.As we start to look forward to the new year, we took some time to reflect on ten of our highlights from 2024.1. WAAP launchIn September, we launched our WAAP security solution (web application and API protection) following the acquisition of Stackpath’s edge WAAP. Gcore WAAP is a genuinely innovative product that offers customers DDoS protection, bot management, and a web application firewall, helping protect businesses from the ever-increasing threat of cyber attacks. It brings next-gen AI features to customers while remaining intuitive to use, meaning businesses of all sizes can futureproof their web app and API protection against even the most sophisticated threats.My highlight of the year was the Stackpath WAAP acquisition, which enabled us to successfully deliver an enterprise-grade web security solution at the edge to our customers in a very short time.Itamar Eshet, Senior Product Manager, Security2. Fundraising round: investing in the futureIn July, we raised $60m in Series A funding, reflecting investors’ confidence in the continued growth and future of Gcore. Next year will be huge for us in terms of AI development, and this funding will accelerate our growth in this area and allow us to bring even more innovative solutions to our customers.3. Innovations in AIIn 2024, we upped our AI offerings, including improved AI services for Gcore Video Streaming: AI ASR for transcription and translation, and AI content moderation. As AI is at the forefront of our products and services, we also provided insights into how regulations are changing worldwide and how AI will likely affect all aspects of digital experiences. We already have many new AI developments in the pipeline for 2025, so watch this space…4. Global expansionsWe had some exciting expansions in terms of new cloud capabilities. We expanded our Edge Cloud offerings in new locations, including Vietnam and South Korea, and in Finland, we boosted our Edge AI capabilities with a new AI cluster and two cutting-edge GPUs. Our AI expansion was further bolstered when we introduced the H200 and GB200 in Luxembourg. We also added new PoPs worldwide in locations such as Munich, Riyadh, and Casablanca, demonstrating our dedication to providing reliable and fast content delivery globally.5. FastEdge launchWe kicked off the year with the launch of FastEdge. This lightweight edge computing solution runs on our global Edge Network and delivers exceptional performance for serverless apps and scripts. This new solution makes handling dynamic content even faster and smoother. We ran an AI image recognition model on FastEdge in an innovative experiment. The Gcore team volunteered their pets to test FastEdge’s performance. Check out the white paper and discover our pets and our technological edge.6. PartnershipsWe formed some exciting global partnerships in 2024. In November, we launched a joint venture with Ezditek, an innovator in data center and digital infrastructure services in Saudi Arabia. The joint venture will build, train, and deploy generative AI solutions locally and globally. We also established some important strategic partnerships. Together with Sesterce, a leading European provider of AI infrastructure, we can help more businesses meet the rising challenges of scaling from AI pilot projects to full-scale implementation. We also partnered with LetzAI, a Luxembourg-based AI startup, to accelerate its mission of developing one of the world’s most comprehensive generative AI platforms.7. EventsIt wasn’t all online. We also ventured out into the real world, making new connections at global technology events, including the WAICF AI conference and Viva Tech in Cannes and Paris, respectively; Mobile World Congress in Barcelona; Gamescom in Cologne in August; IBC (the International Broadcasting Convention) in Amsterdam; and Connected World KSA in Saudi Arabia just last month. We look forward to meeting even more of you next year. Here are a few snapshots from 2024.GamescomIBC8. New container registry solutionSeptember kicked off with the beta launch of Gcore Container Registry, one of the backbones of our cloud offering. It streamlines your image storage and management, keeping your applications running smoothly and consistently across various environments.9. GigaOm recognitionBeing recognized by outside influences is always a moment to remember. In August, we were thrilled to receive recognition from tech analyst GigaOm, which noted Gcore as an outperformer in its field. The prestigious accolade highlights Gcore as a leader in platform capability, innovation, and market impact, as assessed by GigaOm’s rigorous criteria.10. New customer success storiesWe were delighted to share some of the work we’ve done for our customers this year: gaming company Fawkes Games and Austrian sports broadcaster and streaming platform fan.at, helping them with mitigating DDoS attacks and providing the infrastructure for their sports technology offering respectively.And as a bonus number 11, if you’re looking for something to read in the new year lull, download our informative long reads on topics including selecting a modern content delivery network, cyber attack trends, and using Kubernetes to enhance AI. Download the ebook of your choice below.The essential guide to selecting a modern CDN eBookGcore Radar: DDoS attack trends in Q1-Q2 2024 reportAccelerating AI with KubernetesHere’s to 2025!And that’s it for our 2024 highlights. It’s been a truly remarkable year, and we thank you for being a part of it. We’ll leave you with some words from our CEO and see you in 2025.2024 has been a year of highs, from our tenth anniversary celebrations to the launch of various new products, and from expansion into new markets to connecting with customers (new and old) at events worldwide. Happy New Year to all our readers who are celebrating, and see you for an even bigger and better 2025!Andre Reitenbach, CEOChat with us about your 2025 needs

Edge Cloud updates for December 2024

We are pleased to introduce the latest enhancements to our Edge Cloud platform, delivering greater flexibility, reliability, and control over your infrastructure. These updates include multiple public IP support for Bare Metal and strengthened anti-abuse measures. Exclusively for new accounts, we’re offering a special promotion for Bare Metal server activations. Find all the details in this blog.Multiple public IP support for Bare MetalWe’re introducing multiple public IP support for Bare Metal servers on dedicated public subnetworks, adding flexibility and reliability. With this update, you can configure several public IP addresses for seamless service continuity, making your infrastructure more robust. Your services will remain online without interruption with multiple IPs, even if one IP address fails.This functionality brings significant flexibility to scale your operations effortlessly. It’s particularly useful for handling diverse workloads, traffic routing, and complex hosting environments. It’s also an ideal solution for hypervisor environments where segregating traffic across various IPs is crucial.Here’s what you need to know to before getting started:This feature works exclusively with a dedicated public subnet.To enable this functionality, please place a request with our support team.The number of supported public IPs is limited by the size of the dedicated subnet assigned to your Bare Metal server.Please contact our support team to start using multiple public IPs.Strengthened anti-abuse measuresWe’ve introduced new anti-abuse measures to detect and mitigate abusive traffic patterns, enhancing service reliability and protecting your infrastructure from malicious activity. These updates help safeguard your network and achieve consistent application performance.Get more information in our Product Documentation.Try Bare Metal with 35% off this monthGcore Bare Metal servers are the perfect choice for delivering unmatched performance, designed to handle your most demanding workloads. With global availability, they provide a reliable, high-performance, and scalable solution wherever you need them. For a limited time, new customers can enjoy 35% off on High-frequency Bare Metal Servers for two months*.If you’ve been disappointed by your provider during peak season or you’re looking to scale going into 2025, this is the opportunity for you. Take advantage of the offer by January 7 to secure your discount, available for the first 500 customers.Unlock the full potential of Edge CloudThese updates reflect our ongoing commitment to supporting your business with tools and features that address your computing needs. Whether enhancing flexibility, simplifying server management, or improving cost oversight, our Edge Cloud platform is built to help you achieve your goals with confidence.We invite you to explore these enhancements today and take full advantage of the capabilities now available.Discover Gcore Bare Metal* Note: This promotion is available until January 7, 2025. The discount applies for two months from the subscription date and is valid exclusively for new customers activating high-frequency Bare Metal servers. After two months, the discount will be automatically removed. The offer is limited to the first 500 activations.

Edge Cloud Updates for October 2024

Today we’re announcing a range of key enhancements to our Edge Cloud solutions, all crafted to provide you with greater power, flexibility, and control over your cloud infrastructure. Read on to discover why we were named as a Major Player in the 2024 IDC MarketScape for European Public Cloud and learn about Bare Metal availability.Gcore Named Major Player in IDC MarketScape for European Public Cloud 2024We’re excited to announce that we have been recognized as a Major Player in the IDC MarketScape: European Public Cloud Infrastructure (IaaS) 2024 report. This report evaluates and compares public cloud infrastructure-as-a-service (IaaS) providers across Europe, including global and regional cloud providers, to identify the most impactful players in the IaaS landscape.This recognition as a Major Player highlights our commitment at Gcore to providing high-quality cloud services that empower businesses to innovate, scale, and secure their applications with unmatched confidence. We strive to support our customers’ needs with robust solutions tailored for performance, security, and scalability, minimizing the complexities of infrastructure management so you can focus on developing your business.We invite you to read the full press release to learn more.Introducing Additional High-Frequency Bare Metal ServersUnlock the power of our latest high-frequency bare metal server in Manassas, Amsterdam, Santa Clara, Singapore, Sydney, and Luxembourg. With 128 GB RAM capacity, this new additional is specifically designed for compute-intensive, latency-sensitive workloads.This new addition to our Bare Metal lineup provides the performance and reliability to accelerate your most demanding applications. Benefit from dedicated compute power, efficiency, and low latency, perfect for high-performance computing, real-time data analysis, and large-scale simulations.Gcore Bare Metal servers are available in 19 locations on six continents. With just a few clicks in the Gcore Customer Portal, you can easily set up your new high-frequency server. Or, get in touch if you’d like to talk to a Gcore expert.ConclusionWith these October 2024 updates, we continue our commitment to delivering the tools, performance, and reliability you need to build and scale your business with confidence. Stay tuned for more updates as we continue to improve our Edge Cloud solutions.Discover Gcore Edge Cloud

Subscribe
to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.