Gcore named a Leader in the GigaOm Radar for AI Infrastructure!Get the report
  1. Home
  2. Blog
  3. How do e-commerce and online shops benefit from using a modern CDN?
Network
Industry trends

How do e-commerce and online shops benefit from using a modern CDN?

  • February 7, 2023
  • 7 min read
How do e-commerce and online shops benefit from using a modern CDN?

Competition in the e-commerce industry is growing rapidly. To run an online business successfully, you need to be sure that your online platform is fast, stable, and responsive for every user around the globe. Because even a small disruption in service could cost you not only profit but lead to a loss of loyalty and long-term reputational damage.

This is a big challenge for your infrastructure team, and one they’ll need to oversee daily. Your engineers must design and maintain a massive bunch of on-premise or cloud services stitched together for a single purpose—efficient operation of the e-commerce platform.

In this article, we’ll reveal what a modern CDN is, the important part it plays in an e-commerce platform, and how you could benefit from using this cloud service.

What is a CDN?  
How, exactly, does a CDN accelerate websites?  
Additional advantages CDNs bring to the e-commerce industry  
Measurable benefits for online stores and marketplaces  
CDN as a cloud service  
How to choose the best CDN for e-commerce

What is a CDN?

A content delivery network or CDN is a distributed network of caching servers dedicated to storing a copy of your website closer to your audience of end users.

The conventional understanding of a CDN’s purpose is accelerating websites and web applications by delivering cached static content via geographically dispersed server locations. It means every time your user from Boston sends requests to the website hosted in Berlin, the answer will be delivered from the closest point—for example, a server located in New York.

A CDN works as a proxy between your web server and clients—your user connections are terminated at geographically distributed edge (in relation to the network) servers, and only then, if needed, could they reach the origin server.

Read more detailed information about CDN

How, exactly, does a CDN accelerate websites?

Let’s dig a bit deeper into how it works.

The web page loading speed is determined by how quickly the web server can receive the client’s request, process it, and deliver the answer. It depends on web server configuration, website code, third-party scripts, and many other factors. There are many things to optimize on the client and server side, but if you operate globally, one of the most important challenges for you is the distance.

Since every website consists of many different files (like HTML, CSS, JS, and JPG), the webpage loading involves multiple request-answer trips between your browser and the web server, which should travel all the distance between their locations.

Figure 1. How a CDN accelerates static content delivery

Decreasing this distance evidently reduces the overall time needed for page rendering. So, with a properly-configured CDN service, your users will reach your website as if the web hosting is always located in the same region of the globe as they are.

Today, web acceleration is becoming even more tricky. Cloud-native applications with microservice architecture, deeply personalized customer feeds, constant split testing, and many other things that rely on dynamic content delivery are making things more complex. This is the reason why some CDNs are transforming into edge optimization platforms with dynamic content acceleration (DCA) capabilities.

Additional advantages CDNs bring to the e-commerce industry

E-commerce today is not just about having a website and optimization; it’s much more. Running an online store, managing a marketplace, or hosting a classified ads service, you need to make sure that your audience can entrust you with their sensitive data like payment details and user credentials.

Here are some functions beyond web acceleration modern CDNs need to accomplish to meet the demands of the e-commerce industry.

Ensure uptime and minimum service disruption

Aside from web acceleration, a CDN also protects the web server from being overwhelmed during significant spikes in web traffic or during distributed denial of service (DDoS) attacks. Otherwise, these events could cause significant problems like server slowdowns or even crashes.

The ability to handle traffic spikes is very helpful for online retailers during seasonal sales or desirable promo events.

Figure 2. The previously announced PS5 online sale caused a 30% burst in traffic for the online retailer.

Preventing outages due to large-scale DDoS attacks is an inherent feature of many CDN with high global network capacity. It could protect your web service from disruptions and prevent all related profit loss from occurring.

Deliver lightweight product images with ease

Flawless product images are crucial for any e-commerce project, no matter if you are running a small clothing store or a large nationwide retailer. Your buyers should be able to zoom in and inspect every detail of the goods you’re offering. And be able to do so without compromising website responsiveness at the same time.

To achieve this balance between hi-res pictures and their loading speed, you need to perform a very subtle code configuration as well as use efficient image compression and delivery techniques.

That’s where image optimization on CDN (sometimes called “Image CDN”) comes into play.

Figure 3. Image cropping with image optimization on CDN

This image optimization functionality allows you to:

  • Significantly reduce image size by applying compression or converting original images into more optimized formats like WebP or AVIF;
  • Eliminate all pre-uploading routines for your team regarding editing, resizing, and quality optimization, freeing up precious designer resources;
  • Become more agile and flexible with planning and implementing website changes and testing because you’ll be able to apply bulk changes with a simple URL query string.

Read more about image optimization use cases

Instant playback of e-commerce video

Brand videos, product explainers, how-to videos, product look-ups, catwalk clips for clothing previews, and customer video reviews—all these use cases are very important for commercial efficiency in today’s video internet era.

Up to 80%  
increased conversion when using video on landing pages  

Source: saleslion.io
1.81×  
increase in the likelihood of purchasing for those who view video  

Source: adobe.com
Almost 50%  
of internet users look for a video related to a product before visiting a store  

Source: thinkwithgoogle.com

Online shops should be able to host tons of video assets and stream them efficiently via the internet with zero delays. Employing a CDN is the only way to make it possible on a global scale.

Optimized for video-on-demand (VOD) delivery, a CDN service can minimize the time-to-first-byte metrics and provide your audience with the best possible user experience.

Secured operations and payment processing

The e-commerce industry is inherently connected with user credentials, personal data, and payment processing. Regardless of the architecture of your service, you need to treat all kinds of sensitive data very carefully, factoring in all possible security options. Because you don’t get repeated chances to fail and stay valid or considered legitimate in this field.

Modern CDNs work as a full-fledged edge optimization platform designed to create a secure environment for your clients and customers.

With SSL/TLS encryption, you will have the risk-free transactions you need to ensure customer loyalty. A Web Application Firewall (WAF) tool helps prevent unauthorized access and removes vulnerabilities at the application layer.

Measurable benefits for online stores and marketplaces

As we’ve discovered, a CDN could make your web service more reliable, fast, and secure. Which leads us to the following question: what exact benefits could it deliver to your business?

The main benefit your online business could obtain from having a well-optimized website is an improved user experience. It will appropriately affect overall customer satisfaction and long-term loyalty. But all these benefits are hard to assess, so let’s break them down into smaller, more measurable metrics we should keep an eye on.

Decreased bounce rate and longer session duration

Bounce rate and average session duration are the two main metrics of your website (usually tracked in Google Analytics) that are used to show the quality of user behavior.

And both of them are very sensitive to page speed improvements:

  • 20% reduction in page load time leads to 9% decrease in bounce rate (Source: thinkwithgoogle.com)
  • 55% page load time improvement (LCP metric) delivers 23% better session duration (Source: web.dev)

Improved conversion rate

As well as behavior metrics, the website conversion rate could also be impacted by changes in website speed. Since this parameter is very comprehensive, it’s difficult to distill the only reason for its improvement. That being said, in many cases, we can see how it correlates with the time of page loading.

  • A 0.1-second page load time improvement increases mobile conversion rate by 8-10% (Source: thinkwithgoogle.com)

Increased revenue per session

Sometimes, large e-commerce platforms conduct research on how web performance optimization could increase their revenue per user session. For example, here’s how much online fashion brand Zalando improved their stats:

  • 0.7% increased revenue per session with a 100ms page load time improvement (Source: web.dev)

Higher search ranking and better SEO

Search engine optimization (SEO) efforts may seem very unclear when looking in from the outside, but they entail specific and measurable parameters you can monitor with tools like Google Search Console or SEMrush. All things being equal, increasing the webpage loading speed will affect its search ranking results.

  • A 40% improvement in LCP led to 28% more organic traffic (Source: web.dev)
  • Top-ranked websites have faster site speeds for page load time-to-first-byte (Source: neilpatel.com)

Free Whitepaper!

The CDN impact on SEO: how speeding up your website can promote your business online.

Download now

CDN as a cloud service

One more measurable benefit, which we didn’t mention in the list above, is your company’s decreasing amount of required investment and total costs of ownership (TCO). With a CDN, your business won’t need to buy and maintain expensive on-premise appliances needed for DDoS mitigation and correlated bandwidth issues.

This benefit originates from the cloud nature of the CDN service. It means you don’t need to own a large-scale infrastructure with complicated software and thousands of server nodes in dozens of locations worldwide.

You could just easily hire the service when needed and pay as you go.

It gives you greater scalability benefits to increase the agility and flexibility of your product growth and go-to-market strategy.

How to choose the best CDN for e-commerce

Here is a brief checklist that will help you navigate through the main points of acquiring a CDN service.

1. Price and coverage

The price and coverage (read: performance) are the most popular things people ask at first. Both of them could significantly vary from region to region depending on the number of locations, network connectivity, and existing internet conditions.

In this question, your decision should be determined by your knowledge of your audience and the market strategy. As an option, you could choose a multi-CDN strategy with many CDN providers at once.

2. Anti-DDoS and security

At the second step, check the DDoS mitigation capabilities and the list of security options. Modern CDN providers should have built-in security mechanisms like WAF, traffic filtering, bot management, SSL/TLS encryption, etc.

It all depends on your existing security strategy, but it could be a good all-in-one option in some cases.

3. Content optimization and delivery

As mentioned above, e-commerce web platforms strongly depend on static asset delivery, so ask about Brotli/Gzip compression for files and fonts, WebP/AVIF conversion for images, and abilities to crop/resize and change image quality.

All these features should be performed on-the-fly, without affecting your web server configuration and file directories.

4. Dynamic content acceleration

A new age brings with it new challenges. A cloud-native environment with intensive service-to-service communication and deeply personalized user experience demands the acceleration of dynamically generated assets and API calls. For many CDNs, it is a real challenge, because the dynamic content cannot be cached conventionally.

So check the capabilities of your CDN provider on accelerating dynamic content and how they could be adapted for your existing needs.


Gcore CDN is a next-gen content delivery network optimized for dynamic content delivery, video streaming, and image processing. It runs over the global edge infrastructure with more than 140 locations worldwide.

Related articles

Gcore partners with AVEQ to elevate streaming performance monitoring

At Gcore, delivering exceptional streaming experiences to users across our global network is at the heart of what we do. We're excited to share how we're taking our CDN performance monitoring to new heights through our partnership with AVEQ and their innovative Surfmeter solution.Operating a massive global network spanning 210 points of presence across six continents comes with unique challenges. While our globally distributed caching infrastructure already ensures optimal performance for end-users, we recognized the need for deeper insights into the complex interactions between applications and our underlying network. We needed to move beyond traditional server-side monitoring to truly understand what our customers' users experience in the real world.Real-world performance visibilityThat's where AVEQ's Surfmeter comes in. We're now using Surfmeter to gain unprecedented visibility into our network performance through automated, active measurements that simulate actual streaming video quality, exactly as end-users experience it.This isn't about checking boxes or reviewing server logs. It's about measuring what users see on their screens at home. With Surfmeter, our engineering teams can identify and resolve potential bottlenecks or suboptimal configurations, and collaborate more effectively with our customers to continuously improve Quality of Experience (QoE).How we use SurfmeterAVEQ helps us simulate and analyze real-world scenarios where users access different video streams. Their software runs both on network nodes close to our data center CDN caches and at selected end-user locations with genuine ISP connections.What sets Surfmeter apart is its authentic approach: it opens video streams from the same platforms and players that end-users rely on, ensuring measurements truly represent real-world conditions. Unlike monitoring solutions that simply check stream availability, Surfmeter doesn't make assumptions or use third-party playback engines. Instead, it precisely replicates how video players request and decode data served from our CDN.Rapid issue resolutionWhen performance issues arise, Surfmeter provides our engineers with the deep insights needed to quickly identify root causes. Whether the problem lies within our CDN, with peering partners, or on the server side, we can pinpoint it with precision.By monitoring individual video requests, including headers and timings, and combining this data with our internal logging, we gain complete visibility and observability into our entire streaming pipeline. Surfmeter can also perform ping and traceroute tests from the same device, measuring video QoE, allowing our engineers to access all collected data through one API rather than manually connecting to devices for troubleshooting.Competitive benchmarking and future capabilitiesSurfmeter also enables us to benchmark our performance against other services and network providers. By deploying Surfmeter probes at customer-like locations, we can measure streaming from any source via different ISPs.This partnership reflects our commitment to transparency and data-driven service excellence. By leveraging AVEQ's Surfmeter solution, we ensure that our customers receive the best possible streaming performance, backed by objective, end-user-centric insights.Learn more about Gcore CDN

How we engineered a single pipeline for LL-HLS and LL-DASH

Viewers in sports, gaming, and interactive events expect real-time, low-latency streaming experiences. To deliver this, the industry has rallied around two powerful protocols: Low-Latency HLS (LL-HLS) and Low-Latency DASH (LL-DASH).While they share a goal, their methods are fundamentally different. LL-HLS delivers video in a sequence of tiny, discrete files. LL-DASH delivers it as a continuous, chunked download of a larger file. This isn't just a minor difference in syntax; it implies completely different behaviors for the packager, the CDN, and the player.This duality presents a major architectural challenge: How do you build a single, efficient, and cost-effective pipeline that can serve both protocols simultaneously from one source?At Gcore, we took on this unification problem. The result is a robust, single-source pipeline that delivers streams with a glass-to-glass latency of approximately 2.0 seconds for LL-DASH and 3.0 seconds for LL-HLS. This is the story of how we designed it.Understanding the dualityTo build a unified system, we first had to deeply understand the differences in how each protocol operates at the delivery level.LL-DASH: the continuous feedMPEG-DASH has always been flexible, using a single manifest file to define media segments by their timing. Low-Latency DASH builds on this by using Chunked CMAF segments.Imagine a file that is still being written to on the server. Instead of waiting for the whole file to be finished, the player can request it, and the server can send it piece by piece using Chunked Transfer Encoding. The player receives a continuous stream of bytes and can start playback as soon as it has enough data.Single, long-lived files: A segment might be 2–6 seconds long, but it’s delivered as it’s being generated.Timing-based requests: The player knows when a segment should be available and requests it. The server uses chunked transfer to send what it has so far.Player-driven latency: The manifest contains a targetLatency attribute, giving the player a strong hint about how close to the live edge it should play.LL-HLS: the rapid-fire deliveryLL-HLS takes a different approach. It extends the traditional playlist-based HLS by breaking segments into even smaller chunks called Parts.Think of it like getting breaking news updates. The server pre-announces upcoming Parts in the manifest before they are fully available. The player then requests a Part, but the server holds that request open until the Part is ready to be delivered at full speed. This is called a Blocking Playlist Reload.Many tiny files (Parts): A 2-second segment might be broken into four 0.5-second Parts, each requested individually.Manifest-driven updates: The server constantly updates the manifest with new Parts, and uses special tags like #EXT-X-PART-INF and #EXT-X-SERVER-CONTROL to manage delivery.Server-enforced timing: The server controls when the player receives data by holding onto requests, which helps synchronize all viewers.A simplified diagram visually comparing the LL-HLS delivery of many small parts versus the LL-DASH chunked transfer of a single, larger segment over the same time period.These two philosophies demand different things from a CDN. LL-DASH requires the CDN to intelligently cache and serve partially complete files. LL-HLS requires the CDN to handle a massive volume of short, bursty requests and hold connections open for manifest updates. A traditional CDN is optimized for neither.Forging a unified strategyWith two different delivery models, where do you start? You find the one thing they both depend on: the keyframe.Playback can only start from a keyframe (or I-frame). Therefore, the placement of keyframes, which defines the Group of Pictures (GOP), is the foundational layer that both protocols must respect. By enforcing a consistent keyframe interval on the source stream, we could create a predictable media timeline. This timeline can then be described in two different “languages” in the manifests for LL-HLS and LL-DASH.A single timeline with consistent GOPs being packaged for both protocols.This realization led us to a baseline configuration, but each parameter involved a critical engineering trade-off:GOP: 1 second. We chose a frequent, 1-second GOP. The primary benefit is extremely fast stream acquisition; a player never has to wait more than a second for a keyframe to begin playback. The trade-off is a higher bitrate. A 1-second GOP can increase bitrate by 10–15% compared to a more standard 2-second GOP because you're storing more full-frame data. For real-time, interactive use cases, we prioritized startup speed over bitrate savings.Segment Size: 2 seconds. A 2-second segment duration provides a sweet spot. For LL-DASH and modern HLS players, it's short enough to keep manifest sizes manageable. For older, standard HLS clients, it prevents them from falling too far behind the live edge, keeping latency reduced even on legacy players.Part Size: 0.5 seconds. For LL-HLS, this means we deliver four updates per segment. This frequency is aggressive enough to achieve sub-3-second latency while being coarse enough to avoid overwhelming networks with excessive request overhead, which can happen with part durations in the 100–200ms range.Cascading challenges through the pipeline1. Ingest: predictability is paramountTo produce a clean, synchronized output, you need a clean, predictable input. We found that the encoder settings of the source stream are critical. An unstable source with a variable bitrate or erratic keyframe placement will wreck any attempt at low-latency delivery.For our users, we recommend settings that prioritize speed and predictability over compression efficiency:Rate control: Constant Bitrate (CBR)Keyframe interval: A fixed interval (e.g., every 30 frames for 30 FPS, to match our 1s GOP).Encoder tune: zerolatencyAdvanced options: Disable B-frames (bframes=0) and scene-cut detection (scenecut=0) to ensure keyframes are placed exactly where you command them to be.Here is an example ffmpeg command in Bash that encapsulates these principles:ffmpeg -re -i "source.mp4" -c:a aac -c:v libx264 \ -profile:v baseline -tune zerolatency -preset veryfast \ -x264opts "bframes=0:scenecut=0:keyint=30" \ -f flv "rtmp://your-ingest-url"2. Transcoding and packagingOur transcoding and Just-In-Time Packaging (JITP) layer is where the unification truly happens. This component does more than just convert codecs; it has to operate on a stream that is fundamentally incomplete.The primary challenge is that the packager must generate manifests and parts from media files that are still being written by the transcoder. This requires a tightly-coupled architecture where the packager can safely read from the transcoder's buffer.To handle the unpredictable nature of live sources, especially user-generated content via WebRTC, we use a hybrid workflow:GPU Workers (Nvidia/Intel): These handle the heavy lifting of decoding and encoding. Offloading to GPU hardware is crucial for minimizing processing latency and preserving advanced color formats like HDR+.Software Workers and Filters: These provide flexibility. When a live stream from a mobile device suddenly changes resolution or its framerate drops due to a poor connection, a rigid hardware pipeline would crash. Our software layer can handle these context changes gracefully, for instance, by scaling the erratic source and overlaying it on a stable, black-background canvas, meaning the output stream never stops.This makes our JITP a universal packager, creating three synchronized content types from a single, resilient source:LL-DASH (CMAF)LL-HLS (CMAF)Standard HLS (MPEG-TS) for backward compatibility3. CDN delivery: solving two problems at onceThis was the most intensive part of the engineering effort. Our CDN had to be taught how to excel at two completely different, high-performance tasks simultaneously.For LL-DASH, we developed a custom caching module we call chunked-proxy. When the first request for a new .m4s segment arrives, our edge server requests it from the origin. As bytes flow in from the origin, the chunked-proxy immediately forwards them to the client. When a second client requests the same file, our edge server serves all the bytes it has already cached and then appends the new bytes to both clients' streams simultaneously. It’s a multi-client cache for in-flight data.For LL-HLS, the challenges were different:Handling Blocked Requests: Our edge servers needed to be optimized to hold thousands of manifest requests open for hundreds of milliseconds without consuming excessive resources.Intelligent Caching: We needed to correctly handle cache statuses (MISS, EXPIRED) for manifests to ensure only one request goes to the origin per update, preventing a "thundering herd" problem.High Request Volume: LL-HLS generates a storm of requests for tiny part-files. Our infrastructure was scaled and optimized to serve these small files with minimal overhead.The payoff: ultimate flexibility for developersThis engineering effort wasn't just an academic exercise. It provides tangible benefits to developers building with our platform. The primary benefit is simplicity through unification, but the most powerful benefit is the ability to optimize for every platform.Consider the complex landscape of Apple devices. With our unified pipeline, you can create a player logic that does this:On iOS 17.1+: Use LL-DASH with the new Managed Media Source (MMS) API for ~2.0 second latency.On iOS 14.0 - 17.0: Use native LL-HLS for ~3.0 second latency.On older iOS versions: Automatically fall back to standard HLS with a reduced latency of ~9 seconds.This lets you provide the best possible experience on every device, all from a single backend and a single live source, without any extra configuration.Don't fly blind: observability in a low-latency worldA complex system is useless without visibility, and traditional metrics can be misleading for low-latency streaming. Simply looking at response_time from a CDN log is not enough.We had to rethink what to measure. For example:For an LL-HLS manifest, a high response_time (e.g., 500ms) is expected behavior, as it reflects the server correctly holding the request while waiting for the next part. A low response_time could actually indicate a problem. We monitor “Manifest Hold Time” to ensure this blocking mechanism is working as intended.For LL-DASH, a player requesting a chunk that isn't ready yet might receive a 404 Not Found error. While occasional 404s are normal, a spike can indicate origin-to-edge latency issues. This metric, combined with monitoring player liveCatchup behavior, gives a true picture of stream health.Gcore: one pipeline to serve them allThe paths of LL-HLS and LL-DASH may be different, but their destination is the same: real-time interaction with a global audience. By starting with a common foundation—the keyframe—and custom-engineering every component of our pipeline to handle this duality, we successfully solved the unification problem.The result is a single, robust system that gives developers the power of both protocols without the complexity of running two separate infrastructures. It’s how we deliver ±2.0s latency with LL-DASH and ±3.0s with LL-HLS, and it’s the foundation upon which we’ll build to push the boundaries of real-time streaming even further.

Gcore CDN updates: Dedicated IP and BYOIP now available

We’re pleased to announce two new premium features for Gcore CDN: Dedicated IP and Bring Your Own IP (BYOIP). These capabilities give customers more control over their CDN configuration, helping you meet strict security, compliance, and branding requirements.Many organizations, especially in finance and other regulated sectors, require full control over their network identity. With these new features, Gcore enables customers to use unique, dedicated IP addresses to meet compliance or security standards; retain ownership and visibility over IP reputation and routing, and deliver content globally while maintaining trusted, verifiable IP associations.Read on for more information about the benefits of both updates.Dedicated IP: exclusive addresses for your CDN resourcesThe Dedicated IP feature enables customers to assign a private IP address to their CDN configuration, rather than using shared ones. This is ideal for:Businesses that are subject to strict security or legal frameworks.Customers who want isolated IP resources to ensure consistent access and reputation.Teams using WAAP or other advanced security solutions where dedicated IPs simplify policy management.BYOIP: bring your own IP range to Gcore CDNWith Bring Your Own IP (BYOIP), customers can use their own public IP address range while leveraging the performance and global reach of Gcore CDN. This option is especially useful for:Resellers who prefer to keep Gcore infrastructure invisible to end clients.Enterprises maintaining brand consistency and control over IP reputation.How to get startedBoth features are currently available as paid add-ons and are configured manually by the Gcore team. To request activation or learn more, please contact Gcore Support or your account manager.We’re working on making these features easier to manage and automate in future releases. As always, we welcome your feedback on both the feature functionality and the request process—your insights help us improve the Gcore CDN experience for everyone.Get in touch for more information

Smart caching and predictive streaming: the next generation of content delivery

As streaming demand surges worldwide, providers face mounting pressure to deliver high-quality video without buffering, lag, or quality dips, no matter where the viewer is or what device they're using. That pressure is only growing as audiences consume content across mobile, desktop, smart TVs, and edge-connected devices.Traditional content delivery networks (CDNs) were built to handle scale, but not prediction. They reacted to demand, but couldn’t anticipate it. That’s changing.Today, predictive streaming and AI-powered smart caching are enabling a proactive, intelligent approach to content delivery. These technologies go beyond delivering content by forecasting what users will need and making sure it's there before it's even requested. For network engineers, platform teams, and content providers, this marks a major evolution in performance, reliability, and cost control.What are predictive streaming and smart caching?Predictive streaming is a technology that uses AI to anticipate what a viewer will watch next, so the content can be ready before it's requested. That might mean preloading the next episode in a series, caching popular highlights from a live event, or delivering region-specific content based on localized viewing trends.Smart caching supports this by storing that predicted content on servers closer to the viewer, reducing delays and buffering. Together, they make streaming faster and smoother by preparing content in advance based on user behavior.Unlike traditional caching, which relies on static popularity metrics or simple geolocation, predictive streaming is dynamic. It adapts in real time to what’s happening on the platform: user actions, traffic spikes, network conditions, and content trends. This results in:Faster playback with minimal bufferingReduced bandwidth and server loadHigher quality of experience (QoE) scores across user segmentsFor example, during the 2024 UEFA European Championship, several broadcasters used predictive caching to preload high-traffic game segments and highlight reels based on past viewer drop-off points. This allowed for instant replay delivery in multiple languages without overloading central servers.Why predictive streaming matters for viewersGlobally, viewers tend to binge-watch new streaming platform releases. For example, sci-fi-action drama Fallout got 25% of its annual US viewing minutes (2.9 billion minutes) in its first few days of release. The South Korean series Queen of Tears became Netflix's most-watched Korean drama of all time in 2024, amassing over 682.6 million hours viewed globally, with more than half of those watch hours occurring during its six-week broadcast run.A predictive caching system can take advantage of this launch-day momentum by pre-positioning likely-to-be-watched episodes, trailers, or bonus content at the edge, customized by region, device, or time of day.The result is a seamless, high-performance experience that anticipates user behavior and scales intelligently to meet it.Benefits for streaming providersTraditional CDNs often waste resources caching content that may never be viewed. Predictive caching focuses only on content that is likely to be accessed, leading to:Lower egress costsReduced server loadMore efficient cache hit ratiosOne of the core benefits of predictive streaming is latency reduction. By caching content at the edge before it’s requested, platforms avoid the delay caused by round-trips to origin servers. This is especially critical for:Live sports and eventsInteractive or real-time formats (e.g., polls, chats, synchronized streams)Edge environments with unreliable last-mile connectivityFor instance, during the 2024 Copa América, mobile viewers in remote areas of Argentina were able to stream matches without delay thanks to proactive edge caching based on geo-temporal viewing predictions.How it worksAt the core of predictive streaming is smart caching: the process of storing data closer to the end user before it’s explicitly requested. Here’s how it works:Data ingestion: The system gathers data on user behavior, device types, content popularity, and location-based trends.Behavior modeling: AI models identify patterns (e.g., binge-watching behaviors, peak-hour traffic, or regional content spikes).Pre-positioning: Based on predictions, the system caches video segments, trailers, or interactive assets to edge servers closest to where demand is expected.Real-time adaptation: As user behavior changes, the system continuously updates its caching strategy.Use cases across streaming ecosystemsSmart caching and predictive delivery benefit nearly every vertical of streaming.Esports and gaming platforms: Live tournaments generate unpredictable traffic surges, especially when underdog teams advance. Predictive caching helps preload high-interest match content, post-game analysis, and multilingual commentary before traffic spikes hit. This helps provide global availability with minimal delay.Corporate webcasts and investor events: Virtual AGMs or earnings calls need to stream seamlessly to thousands of stakeholders, often under compliance pressure. Predictive systems can cache frequently accessed segments, like executive speeches or financial summaries, at regional nodes.Education platforms: In EdTech environments, predictive delivery ensures that recorded lectures, supplemental materials, and quizzes are ready for users based on their course progression. This reduces lag for remote learners on mobile connections.VOD platforms with regional licensing: Content availability differs across geographies. Predictive caching allows platforms to cache licensed material efficiently and avoid serving geo-blocked content by mistake, while also meeting local performance expectations.Government or emergency broadcasts: During public health updates or crisis communications, predictive streaming can support multi-language delivery, instant replay, and mobile-first optimization without overloading networks during peak alerts.Looking forward: Personalization and platform governanceWe predict that the next wave of predictive streaming will likely include innovations that help platforms scale faster while protecting performance and compliance:Viewer-personalized caching, where individual user profiles guide what’s cached locally (e.g., continuing series, genre preferences)Programmatic cache governance, giving DevOps and marketing teams finer control over how and when content is distributedCross-platform intelligence, allowing syndicated content across services to benefit from shared predictions and joint caching strategiesGcore’s role in the predictive futureAt Gcore, we’re building AI-powered delivery infrastructure that makes the future of streaming a practical reality. Our smart caching, real-time analytics, and global edge network work together to help reduce latency and cost, optimize resource usage, and improve user retention and stream stability.If you’re ready to unlock the next level of content delivery, Gcore’s team is here to help you assess your current setup and plan your predictive evolution.Discover how Gcore streaming technologies helped fan.at boost subscription revenue by 133%

Protecting networks at scale with AI security strategies

Network cyberattacks are no longer isolated incidents. They are a constant, relentless assault on network infrastructure, probing for vulnerabilities in routing, session handling, and authentication flows. With AI at their disposal, threat actors can move faster than ever, shifting tactics mid-attack to bypass static defenses.Legacy systems, designed for simpler threats, cannot keep pace. Modern network security demands a new approach, combining real-time visibility, automated response, AI-driven adaptation, and decentralized protection to secure critical infrastructure without sacrificing speed or availability.At Gcore, we believe security must move as fast as your network does. So, in this article, we explore how L3/L4 network security is evolving to meet new network security challenges and how AI strengthens defenses against today’s most advanced threats.Smarter threat detection across complex network layersModern threats blend into legitimate traffic, using encrypted command-and-control, slow drip API abuse, and DNS tunneling to evade detection. Attackers increasingly embed credential stuffing into regular login activity. Without deep flow analysis, these attempts bypass simple rate limits and avoid triggering alerts until major breaches occur.Effective network defense today means inspection at Layer 3 and Layer 4, looking at:Traffic flow metadata (NetFlow, sFlow)SSL/TLS handshake anomaliesDNS request irregularitiesUnexpected session persistence behaviorsGcore Edge Security applies real-time traffic inspection across multiple layers, correlating flows and behaviors across routers, load balancers, proxies, and cloud edges. Even slight anomalies in NetFlow exports or unexpected east-west traffic inside a VPC can trigger early threat alerts.By combining packet metadata analysis, flow telemetry, and historical modeling, Gcore helps organizations detect stealth attacks long before traditional security controls react.Automated response to contain threats at network speedDetection is only half the battle. Once an anomaly is identified, defenders must act within seconds to prevent damage.Real-world example: DNS amplification attackIf a volumetric DNS amplification attack begins saturating a branch office's upstream link, automated systems can:Apply ACL-based rate limits at the nearest edge routerFilter malicious traffic upstream before WAN degradationAlert teams for manual inspection if thresholds escalateSimilarly, if lateral movement is detected inside a cloud deployment, dynamic firewall policies can isolate affected subnets before attackers pivot deeper.Gcore’s network automation frameworks integrate real-time AI decision-making with response workflows, enabling selective throttling, forced reauthentication, or local isolation—without disrupting legitimate users. Automation means threats are contained quickly, minimizing impact without crippling operations.Hardening DDoS mitigation against evolving attack patternsDDoS attacks have moved beyond basic volumetric floods. Today, attackers combine multiple tactics in coordinated strikes. Common attack vectors in modern DDoS include the following:UDP floods targeting bandwidth exhaustionSSL handshake floods overwhelming load balancersHTTP floods simulating legitimate browser sessionsAdaptive multi-vector shifts changing methods mid-attackReal-world case study: ISP under hybrid DDoS attackIn recent years, ISPs and large enterprises have faced hybrid DDoS attacks blending hundreds of gigabits per second of L3/4 UDP flood traffic with targeted SSL handshake floods. Attackers shift vectors dynamically to bypass static defenses and overwhelm infrastructure at multiple layers simultaneously. Static defenses fail in such cases because attackers change vectors every few minutes.Building resilient networks through self-healing capabilitiesEven the best defenses can be breached. When that happens, resilient networks must recover automatically to maintain uptime.If BGP route flapping is detected on a peering session, self-healing networks can:Suppress unstable prefixesReroute traffic through backup transit providersPrevent packet loss and service degradation without manual interventionSimilarly, if a VPN concentrator faces resource exhaustion from targeted attack traffic, automated scaling can:Spin up additional concentratorsRedistribute tunnel sessions dynamicallyMaintain stable access for remote usersGcore’s infrastructure supports self-healing capabilities by combining telemetry analysis, automated failover, and rapid resource scaling across core and edge networks. This resilience prevents localized incidents from escalating into major outages.Securing the edge against decentralized threatsThe network perimeter is now everywhere. Branches, mobile endpoints, IoT devices, and multi-cloud services all represent potential entry points for attackers.Real-world example: IoT malware infection at the branchMalware-infected IoT devices at a branch office can initiate outbound C2 traffic during low-traffic periods. Without local inspection, this activity can go undetected until aggregated telemetry reaches the central SOC, often too late.Modern edge security platforms deploy the following:Real-time traffic inspection at branch and edge routersBehavioral anomaly detection at local points of presenceAutomated enforcement policies blocking malicious flows immediatelyGcore’s edge nodes analyze flows and detect anomalies in near real time, enabling local containment before threats can propagate deeper into cloud or core systems. Decentralized defense shortens attacker dwell time, minimizes potential damage, and offloads pressure from centralized systems.How Gcore is preparing networks for the next generation of threatsThe threat landscape will only grow more complex. Attackers are investing in automation, AI, and adaptive tactics to stay one step ahead. Defending modern networks demands:Full-stack visibility from core to edgeAdaptive defense that adjusts faster than attackersAutomated recovery from disruption or compromiseDecentralized detection and containment at every entry pointGcore Edge Security delivers these capabilities, combining AI-enhanced traffic analysis, real-time mitigation, resilient failover systems, and edge-to-core defense. In a world where minutes of network downtime can cost millions, you can’t afford static defenses. We enable networks to protect critical infrastructure without sacrificing performance, agility, or resilience.Move faster than attackers. Build AI-powered resilience into your network with Gcore.Check out our docs to see how DDoS Protection protects your network

Introducing Gcore for Startups: created for builders, by builders

Building a startup is tough. Every decision about your infrastructure can make or break your speed to market and burn rate. Your time, team, and budget are stretched thin. That’s why you need a partner that helps you scale without compromise.At Gcore, we get it. We’ve been there ourselves, and we’ve helped thousands of engineering teams scale global applications under pressure.That’s why we created the Gcore Startups Program: to give early-stage founders the infrastructure, support, and pricing they actually need to launch and grow.At Gcore, we launched the Startups Program because we’ve been in their shoes. We know what it means to build under pressure, with limited resources, and big ambitions. We wanted to offer early-stage founders more than just short-term credits and fine print; our goal is to give them robust, long-term infrastructure they can rely on.Dmitry Maslennikov, Head of Gcore for StartupsWhat you get when you joinThe program is open to startups across industries, whether you’re building in fintech, AI, gaming, media, or something entirely new.Here’s what founders receive:Startup-friendly pricing on Gcore’s cloud and edge servicesCloud credits to help you get started without riskWhite-labeled dashboards to track usage across your team or customersPersonalized onboarding and migration supportGo-to-market resources to accelerate your launchYou also get direct access to all Gcore products, including Everywhere Inference, GPU Cloud, Managed Kubernetes, Object Storage, CDN, and security services. They’re available globally via our single, intuitive Gcore Customer Portal, and ready for your production workloads.When startups join the program, they get access to powerful cloud and edge infrastructure at startup-friendly pricing, personal migration support, white-labeled dashboards for tracking usage, and go-to-market resources. Everything we provide is tailored to the specific startup’s unique needs and designed to help them scale faster and smarter.Dmitry MaslennikovWhy startups are choosing GcoreWe understand that performance and flexibility are key for startups. From high-throughput AI inference to real-time media delivery, our infrastructure was designed to support demanding, distributed applications at scale.But what sets us apart is how we work with founders. We don’t force startups into rigid plans or abstract SLAs. We build with you 24/7, because we know your hustle isn’t a 9–5.One recent success story: an AI startup that migrated from a major hyperscaler told us they cut their inference costs by over 40%…and got actual human support for the first time. What truly sets us apart is our flexibility: we’re not a faceless hyperscaler. We tailor offers, support, and infrastructure to each startup’s stage and needs.Dmitry MaslennikovWe’re excited to support startups working on AI, machine learning, video, gaming, and real-time apps. Gcore for Startups is delivering serious value to founders in industries where performance, cost efficiency, and responsiveness make or break product experience.Ready to scale smarter?Apply today and get hands-on support from engineers who’ve been in your shoes. If you’re an early-stage startup with a working product and funding (pre-seed to Series A), we’ll review your application quickly and tailor infrastructure that matches your stage, stack, and goals.To get started, head on over to our Gcore for Startups page and book a demo.Discover Gcore for Startups

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.