Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
Under attack?

Products

Solutions

Resources

Partners

Why Gcore

  1. Home
  2. Blog
  3. Inference takes the lead in AI innovation

Inference takes the lead in AI innovation

  • By Gcore
  • December 23, 2024
  • 4 min read
Inference takes the lead in AI innovation

Training AI models has become an incredibly resource-intensive endeavor, requiring immense computational power and a significant investment in expertise. This complexity has created a barrier that only a handful of companies can realistically overcome. Tech giants are leading the charge in training large-scale foundational models, leveraging their unmatched resources and specialized teams.

For most other organizations, the focus in 2025 will shift to fine-tuning and inference. Rather than starting from scratch, businesses can adapt pretrained models to suit their specific needs, making AI more accessible and cost-effective. This approach allows companies to harness the power of AI without needing to build extensive infrastructure or assemble teams of highly specialized researchers. By narrowing the scope to fine-tuning and inference, businesses can remain competitive in an AI-driven world without shouldering the immense costs and challenges of model training.

Inference on the rise: predictions for 2025

As AI embeds itself deeper into the fabric of various industries, inference is taking center stage as the key to unlocking real-time, actionable insights. Its importance is growing rapidly, driven by the need for faster decision-making, the proliferation of connected devices, and the push toward decentralized computing. By 2025, inference will be a cornerstone of AI applications, with several trends defining its trajectory.

One notable shift is the increasing demand for instant insights across sectors like retail, finance, and healthcare. Businesses are now relying on AI systems that can analyze data and generate responses in milliseconds. For example, customer service chatbots must provide quick, coherent answers to maintain user satisfaction, while predictive maintenance systems in manufacturing need to process sensor data immediately to preempt equipment failures. The emphasis on speed and precision is reshaping how inference engines are designed and deployed.

The explosion of Internet of Things (IoT) devices is another factor accelerating the rise of inference. These devices, from industrial sensors to connected home gadgets, produce a continuous stream of data. In sectors like transportation, AI-powered traffic management systems rely on real-time analysis of this data to adjust signals dynamically and reduce congestion. The sheer scale of these applications demands robust inference capabilities that can handle data flows without delays, providing optimal performance.

Edge inference is emerging as a transformative solution to meet these demands. By processing data closer to its source, edge computing eliminates the delays caused by sending information to centralized data centers. This localized approach not only reduces latency but also lowers bandwidth costs and enhances data security by keeping sensitive information on-site. It is especially critical for time-sensitive applications like autonomous vehicles, where even a split-second delay could result in catastrophic outcomes, or in healthcare, where real-time patient monitoring can be life-saving.

Inference is evolving from a technical process into a strategic advantage, enabling businesses to deliver faster, smarter, and more secure AI solutions. As it becomes integral to everything from customer interactions to operational efficiency, its role in shaping the future of AI cannot be overstated. In 2025 and beyond, inference will not just support AI applications; it will drive them.

Real-world use cases

Inference is already transforming industries, and its potential will only grow. Consider Walmart’s efforts in “adaptive retail,” an initiative to create highly personalized shopping experiences. By integrating AI into its operations, Walmart can deliver tailored offers, enhance fraud detection, and improve store efficiency—all powered by real-time inference.

Similar advancements are occurring across industries:

  • Customer experience: AI inference enables instant translations, hyper-personalized recommendations, and seamless chatbot interactions, enhancing customer engagement.
  • Operational optimization: Inference drives predictive maintenance, process automation, and demand forecasting, reducing costs and improving efficiency.
  • Risk mitigation: From fraud detection to cybersecurity, AI’s ability to analyze threats in real time helps businesses stay ahead of potential risks.

The edge advantage in AI inference

The rise of edge computing is tightly interwoven with the growing importance of inference. By processing data closer to the source, edge technology provides four major benefits:

  • Ultra-low latency: Inference applications like virtual assistants, self-driving cars, and smart home systems demand split-second decision-making. Edge computing eliminates the need to send data to centralized servers, reducing delays and providing smooth operation.
  • Scalability for high-demand scenarios: In industries like retail or streaming, demand for AI services can spike unexpectedly. Edge computing allows workloads to be distributed across multiple nodes, keeping systems responsive during peak times. For example, a live sports broadcast with millions of viewers can use edge inference to analyze viewer preferences and deliver personalized ad content in real time.
  • Enhanced security and compliance: For industries like healthcare and finance, where data privacy is critical, edge inference offers a safer alternative by keeping sensitive data on-site. This reduces the risk of breaches while promoting compliance with regional data protection regulations.
  • Cost efficiency: Beyond low latency and security, edge computing significantly reduces costs by minimizing data transfer and central server reliance.

Preparing for the era of inference

As AI continues to evolve, businesses must make strategic decisions about their AI infrastructure. The ability to deliver low-latency, scalable, and secure inference applications will determine success in the years ahead. Here are some practical steps to prepare:

  • Adopt edge technology: Partner with cloud providers offering robust edge capabilities to make sure your AI inference infrastructure meets performance demands.
  • Optimize AI models: Focus on fine-tuning pretrained models for your specific needs rather than attempting full-scale training.
  • Prioritize compliance: Check your AI systems adhere to regional data laws, especially if operating across borders.

Inference computing for 2025 and beyond, powered by Gcore

Gcore is a leading provider of the type of future-proofed edge infrastructure needed to shepherd inference computing use cases into 2025. Our expansive content delivery network (CDN) platform supports real-time inference for AI applications like customer service chatbots, fraud detection, and recommender systems, delivering low-latency responses. Gcore has the edge computing power, global reach, and robust security to help companies deploy and scale AI models on a flexible, powerful infrastructure.

At Gcore, we recently announced an enormous boost to our Edge AI capacity with our Finland-based NVIDIA H100 GPU cluster and new cutting-edge GPUs: NVIDIA GB200 and H200. With next-gen scalability, speed, and efficiency, these advances set the stage for groundbreaking AI advancements for our customers.

Power your AI innovation with Gcore Inference at the Edge

Related articles

Gcore and Orange Business launch innovation program piloting joint solution to deliver sovereign inference as a service

Gcore and Orange Business have kicked off a strategic co-innovation program with the mission to deliver a scalable, production-grade AI inference service that is sovereign by design. By combining Orange Business’ secure, trusted cloud infrastructure and Gcore’s AI inference private deployment service, the collaboration empowers European enterprises and public sector organizations to run inference workloads at scale, without compromising on latency, control, or compliance.Gcore’s AI inference private deployment service is already live on Orange Business’ Cloud Avenue infrastructure. Selected enterprises across industries are actively testing it in real-world scenarios. These pilot customers are exploring how fast, secure, and compliant inference can accelerate their AI projects, cut deployment times, and reduce infrastructure overhead.The prototype will be demonstrated at NVIDIA GTC Paris, at the Taiga Cloud booth G26. Stop by any time to see it in action.The inference supercycle is underwayBy 2030, inference will comprise 70% of enterprise AI workloads. Telcos are well positioned to lead this shift due to their dense edge presence, licensed national data infrastructure, and long-standing trust relationships.Gcore’s inference solution provides a sovereign, edge-native inference layer. It enables users to serve real-time, GPU-intensive applications like agentic AI, trusted LLMs, computer vision, and predictive analytics, all while staying compliant with Europe’s evolving data and AI governance frameworks.From complexity to three clicksEnterprise AI doesn’t need to be hard. Deploying inference workloads at scale used to demand Kubernetes fluency, large MLOps teams, and costly trial-and-error.Now? It’s just three clicks:Pick a model: Choose from NVIDIA NIMs, open source, or proprietary libraries.Choose a region: Select one of Orange Business’ accredited EU data centers.Deploy: See your workloads go live in under 10 seconds.Enterprises can launch inference projects faster, test ideas more quickly, and deliver production-ready AI services without spending months on ML plumbing.Explore our blog to watch a demo showing how enterprises can deploy inference workloads in just three clicks and ten seconds.Sovereign by designAll model data, logs, and inference results are stored exclusively within Orange Business’ own data centers in France, Germany, Norway, and Sweden. Cross-border data transfer is opt-in only, helping ensure alignment with GDPR, sector-specific regulations, and the forthcoming EU AI Act.This platform is built for trust, transparency, and sovereignty by default. Customers maintain full control over their data, with governance baked into every layer of the deployment.Performance without trade-offsGcore’s AI inference solution avoids the latency spikes, cold starts, and resource waste common in traditional cloud AI setups. Key design features include:Smart GPU routing: Directs each request to the nearest in-region GPU, delivering real-time performance with sub-50ms latency.Pre-loaded models: Reduces cold start delays and improves response times.Secure multi-tenancy: Isolates customer data while maximizing infrastructure efficiency.The result is a production-ready inference platform optimized for both performance and compliance.Powering the future of AI infrastructureThis partnership marks a step forward for Europe’s sovereign AI capabilities. It highlights how telcos can serve as the backbone of next-generation AI infrastructure, hosting, scaling, and securing workloads at the edge.With hundreds of edge POPs, trusted national networks, and deep ties across vertical industries, Orange Business is uniquely positioned to support a broad range of use cases, including real-time customer service AI, fraud detection, healthcare diagnostics, logistics automation, and public sector digital services.What’s next: validating real-world performanceThis phase of the Gcore and Orange Business program is focused on validating the solution through live customer deployments and performance benchmarks. Orange Business will gather feedback from early access customers to shape its future sovereign inference service offering. These insights will drive refinements and shape the roadmap ahead of a full commercial launch planned for later this year.Gcore and Orange Business are committed to delivering a sovereign inference service that meets Europe’s highest standards for speed, simplicity, and trust. This co-innovation program lays the foundation for that future.Ready to discover how Gcore and Orange Business can deliver sovereign inference as a service for your business?Request a preview

Why on-premises AI is making a comeback

In recent years, cloud AI infrastructure has soared in popularity. With its scalability and ease of deployment, it’s no surprise that organizations rushed to transfer their data to the cloud in a bid to become “cloud-first.”But now, the tide is turning.As AI workloads grow more complex and regulatory pressures increase, many companies are reconsidering their reliance on cloud and turning back toward on-premises AI infrastructure.Rather than doubling down on the cloud, organizations are diversifying—adopting multi-cloud models, sovereign cloud environments, and even hybrid or fully on-prem setups. The era of a single cloud provider handling everything is coming to an end. Why? Control, security, and performance are hard to find in the public cloud.Here’s why more businesses are bringing AI back in-house.#1 Enhanced data security and controlData security remains one of the most urgent concerns driving the return to on-prem infrastructure.For sensitive or high-priority workloads—common in sectors like finance, healthcare, and government—keeping data off the cloud is often non-negotiable. Cloud computing inherently increases risk by exposing data to shared environments, wider attack surfaces, and complex supply chains.Choosing a trusted cloud provider can mitigate some of those risks. But it can’t replace the peace of mind that comes from keeping sensitive data in-house.With on-premises AI, organizations gain fine-grained access control. Encryption keys remain internal and breach exposure shrinks dramatically. It’s also much easier to stay compliant with privacy laws when data never leaves your own secure perimeter.For industries where trust and confidentiality are everything, on-prem solutions offer full visibility into where and how data is stored and processed.#2 Performance enhancement and latency reductionLatency matters—especially in AI.On-premises AI systems excel in environments that require real-time performance and heavy compute loads. Processing data locally avoids the physical delays caused by transferring it across the internet to a cloud data center.By eliminating long-haul network hops, companies get near-instant access to computing resources. They also get to fine-tune their internal networks—using private fiber, low-hop switching, and other low-latency optimizations that cloud customers can’t control.Unlike multi-tenant cloud platforms, on-prem resources aren’t shared. That means consistently low, predictable latency.This is vital for use cases where milliseconds—or even microseconds—make a difference: autonomous vehicles, real-time analytics, robotic control systems, and high-speed trading. Fast feedback loops and localized processing enable better outcomes, tighter control, and faster decision-making at the edge.#3 Regulatory compliance and data sovereigntyAround the world, data privacy regulations are tightening. For most organizations, compliance isn’t optional.On-premises infrastructure helps keep data safely inside the organization’s network. This supports data sovereignty, ensuring that sensitive information remains subject only to local laws—not the policies of another country’s cloud provider.It's also a powerful hedge against geopolitical instability.While hyperscalers operate globally, they’re always headquartered somewhere. That makes their infrastructure vulnerable to political shifts, sanctions, or changes in international data law. Governments may require them to restrict access, share data, or cut off services entirely—especially to organizations in sanctioned or adversarial jurisdictions.Businesses relying on these providers risk disruption when regulations change. On-premises infrastructure, by contrast, offers reliable continuity and greater control—especially in uncertain times.#4 Cost control and operational benefitsCloud pricing may look flexible, but costs can escalate quickly.Data transfers, storage, and compute spikes all add up—fast. In contrast, on-premises infrastructure provides a predictable Total Cost of Ownership (TCO). Although upfront CapEx is higher, OpEx remains more stable over time.Organizations can invest in high-performance hardware tailored to their specific needs and amortize those costs across years. That means no surprise bills, no sudden price hikes, and no dependence on vendor pricing models.Of course, running on-prem infrastructure comes with its own challenges. It demands specialized teams for deployment, maintenance, and support. These experts are costly to recruit and retain—but they’re critical to ensure uptime, security, and performance.Still, for companies with relatively stable compute and storage needs, the long-term savings often outweigh the initial setup effort. On-prem also integrates more smoothly into existing IT workflows, without the need for internet access or additional network setup—another operational bonus.#5 Proactive threat detection and automated responsesOn-premises AI sometimes enables smarter, more customized security.Advanced platforms can continuously analyze live data streams using machine learning to detect anomalies and predict threats. When something suspicious is flagged, the system can respond instantly by quarantining data, blocking traffic, and alerting security teams.That kind of automation is essential for minimizing damage and downtime.With full infrastructure control, organizations can deploy bespoke monitoring systems that align with their threat models. Deep packet inspection, real-time anomaly detection, and behavioral analytics can be easier to configure and maintain on-prem than in shared cloud environments.These systems can also work seamlessly with WAAP and DDoS tools to detect and neutralize threats before they spread. The key is flexibility: whether on-prem or cloud-based, AI-driven security should adapt to your architecture and threat landscape, not the other way around.End-to-end visibility can give security teams a clearer picture and faster response options than generic, one-size-fits-all public cloud security tools.How to combine eon-premises control with cloud scalabilityLet’s be clear: on-premises AI isn’t perfect. It demands upfront investment. It requires skilled personnel to deploy and manage systems. And integrating AI into legacy environments takes thoughtful planning.But today’s tools are helping bridge those gaps. Modern platforms reduce the need for constant manual intervention. They support real-time updates to threat models and detection logic. As a result, security teams can spend more time on strategy and less on maintenance.Meanwhile, the cloud still plays an important role. It offers faster access to new tools, software updates, and next-gen GPU hardware.That’s why many organizations are opting for a hybrid model.Our recommendation: Keep your sensitive, high-priority workloads on-prem. Use the cloud for elastic scale and innovation. Together, they deliver the best of both worlds: performance, control, compliance, and flexibility.Secure your digital infrastructure with Gcore on-premises AI inferenceWhether you’re protecting sensitive data or running high-demand workloads, on-premises AI gives you the control and confidence you need. Securing sensitive data and managing high-demand workloads requires a level of control, performance, and predictability that only on-premises AI infrastructure delivers.Gcore Everywhere Inference Private Deployment makes it easier than ever to bring powerful serverless AI inference capabilities directly into your physical environment. Designed for scalable global performance, Everywhere Inference enables robust and secure multi-tenant AI inference deployments across on-prem and cloud environments, helping you meet data sovereignty requirements, reduce latency, and streamline deployment.Talk to us about your on-prem AI plans

3 clicks, 10 seconds: what real serverless AI inference should look like

Deploying a trained AI model could be the easiest part of the AI lifecycle. After the heavy lifting of data collection, training, and optimization, pushing a model into production is where “the rubber hits the road”, meaning the business expects to see the benefits of invested time and resources. In reality, many AI projects fail in production because of poor performance stemming from suboptimal infrastructure conditions.There are, broadly speaking, two paths developers can take when deploying inference: DIY, which is time and resource-consuming and requires domain expertise from several teams within the business, or the ever-so-popular “serverless inference” solution. The latter is supposed to simplify the task at hand and deliver productivity, cutting down effort to seconds, not hours. Yet most platforms offering “serverless” AI inference still feel anything but effortless. They require containers, configs, and custom scripts. They bury users in infrastructure decisions. And they often assume your data scientists are also DevOps engineers. It’s a far cry from what serverless was meant to be.At Gcore, we believe real serverless inference means this: three clicks and ten seconds to deploy a model. That’s not a tagline—it’s the experience we built. And it’s what infrastructure leaders like Mirantis are now enabling for enterprises through partnerships with Gcore.Why deployment UX matters more than you thinkServerless inference isn’t just a backend architecture choice. It’s a business enabler, a go-to-market accelerator, an ROI optimizer, a technology democratizer—or, if poorly executed, a blocker.The reality is that inference workloads are a key point of interface between your AI product or service and the customer. If deployment is clunky, you’re struggling to keep up with demand. If provisioning takes too long, latency spikes, performance is inconsistent, and ultimately your service doesn’t scale. And if the user experience is unclear or inconsistent, customers end up frustrated—or worse, they churn.Developers and data scientists don’t want to manage infrastructure. They want to bring a model and get results without becoming cloud operators in the process.Dom Wilde, SVP Marketing, MirantisThat’s why deployment UX is no longer a nice-to-have. It’s the core of your product.The benchmark: 3 clicks, 10 secondsWe built Gcore Everywhere Inference to remove every unnecessary step between uploading a model and running it in production. That includes GPU provisioning, routing, scaling, isolation, and endpoint generation, all handled behind the scenes.The result is what we believe should be the default:Upload a modelConfirm deployment parametersClick deployAnd within ten seconds, you’re serving live inference.For platform teams supporting AI workloads, this isn’t just a better workflow. It’s a transformation.With Gcore, our customers can deliver not just self-service infrastructure but also inference as a product. End users can deploy models in seconds, and customers don’t have to micromanage the backend to support that.Dom Wilde, MirantisSimple frontend, powerful backendIt’s worth saying: simplifying the frontend doesn’t mean weakening the backend. Gcore’s platform is built for scale and performance, offering the following:Multi-tenant GPU isolationSmart routing based on location and loadAuto-scaling based on demandA unified API and UI for both automation and accessibilityWhat makes this meaningful isn’t just the tech, it’s the way it vanishes behind the scenes. With Gcore, Mirantis customers can deliver low-latency inference, maximize GPU efficiency, and meet data privacy requirements without touching low-level infrastructure.Many enterprises and cloud customers worry about underutilized GPUs. Now, every cycle is optimized. The platform handles the complexity so our customers can focus on building value.Dom Wilde, MirantisIf it’s not 3 clicks and 10 seconds, it’s not really serverlessThere’s a growing gap between what serverless inference promises and what most platforms deliver. Many cloud providers are focused on raw compute or orchestration, but overlook the deployment layer. That’s a mistake. Because when it comes to customer experience, ease of deployment is the product.Mirantis saw that early on and partnered with Gcore to bring inference-as-a-service to CSP and enterprise customers, fast. Now, customers can launch new offerings more quickly, reduce operational overhead, and improve the user experience with a simple, elegant deployment path.Redefine serverless AI with GcoreIf it takes a config file, a container, and a support ticket to deploy a model, it’s not serverless—it’s server-less-ish. With Gcore Everywhere Inference, we’ve set a new benchmark: three clicks and ten seconds to deploy AI. And, our model catalog offers a variety of popular models so you can get started right away.Whether you’re frustrated with slow, inefficient model deployments or looking for the most effective way to start using AI for your company, you need Gcore Everywhere Inference. Give our experts a call to discover how we can simplify your AI so you can focus on scaling and business logic.Let’s talk about your AI project

Run AI inference faster, smarter, and at scale

Training your AI models is only the beginning. The real challenge lies in running them efficiently, securely, and at scale. AI and reality meet in inference—the continuous process of generating predictions in real time. It is the driving force behind virtual assistants, fraud detection, product recommendations, and everything in between. Unlike training, inference doesn’t happen once; it runs continuously. This means that inference is your operational engine rather than just technical infrastructure. And if you don’t manage it well, you’re looking at skyrocketing costs, compliance risks, and frustrating performance bottlenecks. That’s why it’s critical to rethink where and how inference runs in your infrastructure.The hidden cost of AI inferenceWhile training large models often dominates the AI conversation, it’s inference that carries the greatest operational burden. As more models move into production, teams are discovering that traditional, centralized infrastructure isn’t built to support inference at scale.This is particularly evident when:Real-time performance is critical to user experienceRegulatory frameworks require region-specific data processingCompute demand fluctuates unpredictably across time zones and applicationsIf you don’t have a clear plan to manage inference, the performance and impact of your AI initiatives could be undermined. You risk increasing cloud costs, adding latency, and falling out of compliance.The solution: optimize where and how you run inferenceOptimizing AI inference isn’t just about adding more infrastructure—it’s about running models smarter and more strategically. In our new white paper, “How to Optimize AI Inference for Cost, Speed, and Compliance”, we break it down into three key decisions:1. Choose the right stage of the AI lifecycleNot every workload needs a massive training run. Inference is where value is delivered, so focus your resources on where they matter most. Learn when to use pretrained models, when to fine-tune, and when simple inference will do the job.2. Decide where your inference should runFrom the public cloud to on-prem and edge locations, where your model runs, impacts everything from latency to compliance. We show why edge inference is critical for regulated, real-time use cases—and how to deploy it efficiently.3. Match your model and infrastructure to the taskBigger models aren’t always better. We cover how to choose the right model size and infrastructure setup to reduce costs, maintain performance, and meet privacy and security requirements.Who should read itIf you’re responsible for turning AI from proof of concept into production, this guide is for you.Inference is where your choices immediately impact performance, cost, and customer experience, whether you’re managing infrastructure, developing models, or building AI-powered solutions. This white paper will help you cut through complexity and focus on what matters most: running smarter, faster, and more scalable inference.It’s especially relevant if you’re:A machine learning engineer or AI architect deploying models across environmentsA product manager introducing real-time AI featuresA technical leader or decision-maker managing compute, cloud spend, or complianceOr simply trying to scale AI without sacrificing controlIf inference is the next big challenge on your roadmap, this white paper is where to start.Scale AI inference seamlessly with GcoreEfficient, scalable inference is critical to making AI work in production. Whether you’re optimizing for performance, cost, or compliance, you need infrastructure that adapts to real-world demand. Gcore Everywhere Inference brings your models closer to users and data sources—reducing latency, minimizing costs, and supporting region-specific deployments.Our latest white paper, “How to optimize AI inference for cost, speed, and compliance”, breaks down the strategies and technologies that make this possible. From smart model selection to edge deployment and dynamic scaling, you’ll learn how to build an inference pipeline that delivers at scale.Ready to make AI inference faster, smarter, and easier to manage?Download the white paper

Securing vibe coding: balancing speed with cybersecurity

Vibe coding has emerged as a cultural phenomenon in 2025 software development. It’s a style defined by coding on instinct and moving fast, often with the help of AI, rather than following rigid plans. It lets developers skip exhaustive design phases and dive straight into building, writing code (or prompting an AI to write it) in a rapid, conversational loop. It has caught on fast and boasts a dedicated following of developers hosting vibe coding game jams.So why all the buzz? For one, vibe coding delivers speed and spontaneity. Enthusiasts say it frees them to prototype at the speed of thought, without overthinking architecture. A working feature can be blinked into existence after a few AI-assisted prompts, which is intoxicating for startups chasing product-market fit. But as with any trend that favors speed over process, there’s a flip side.This article explores the benefits of vibe coding and the cybersecurity risks it introduces, examines real incidents where "just ship it" coding backfired, and outlines how security leaders can keep up without slowing innovation.The upside: innovation at breakneck speedVibe coding addresses real development needs and has major benefits:Allows lightning-fast prototyping with AI assistance. Speed is a major advantage, especially for startups, and allows faster validation of ideas and product-market fit.Prioritizes creativity over perfection, rewarding flow and iteration over perfection.Lowers barriers to entry for non-experts. AI tooling lowers the skill floor, letting more people code.Produces real success stories, like a game built via vibe coding hitting $1M ARR in 17 days.Vibe coding aligns well with lean, agile, and continuous delivery environments by removing overhead and empowering rapid iteration.When speed bites backVibe coding isn’t inherently insecure, but the culture of speed it promotes can lead to critical oversights, especially when paired with AI tooling and lax process discipline. The following real-world incidents aren’t all examples of vibe coding per se, but they illustrate the kinds of risks that arise when developers prioritize velocity over security, skip reviews, or lean too heavily on AI without safeguards. These three cases show how fast-moving or under-documented development practices can open serious vulnerabilities.xAI API key leak (2025)A developer at Elon Musk’s AI company, xAI, accidentally committed internal API keys to a public GitHub repo. These keys provided access to proprietary LLMs trained on Tesla and SpaceX data. The leak went undetected for two months, exposing critical intellectual property until a researcher reported it. The error likely stemmed from fast-moving development where secrets were hardcoded for convenience.Malicious NPM packages (2024)In January 2024, attackers uploaded npm packages like warbeast2000 and kodiak2k, which exfiltrated SSH keys from developer machines. These were downloaded over 1,600 times before detection. Developers, trusting AI suggestions or searching hastily for functionality, unknowingly included these malicious libraries.OpenAI API key abuse via Replit (2024)Hackers scraped thousands of OpenAI API keys from public Replit projects, which developers had left in plaintext. These keys were abused to access GPT-4 for free, racking up massive bills for unsuspecting users. This incident shows how projects with weak secret hygiene, which is a risk of vibe coding, become easy targets.Securing the vibe: smart risk mitigationCybersecurity teams can enable innovation without compromising safety by following a few simple cybersecurity best practices. While these don’t offer 100% security, they do mitigate many of the major vulnerabilities of vibe coding.Integrate scanning tools: Use SAST, SCA, and secret scanners in CI/CD. Supplement with AI-based code analyzers to assess LLM-generated code.Shift security left: Embed secure-by-default templates and dev-friendly checklists. Make secure SDKs and CLI wrappers easily available.Use guardrails, not gates: Enable runtime protections like WAF, bot filtering, DDoS defense, and rate limiting. Leverage progressive delivery to limit blast radius.Educate, don’t block: Provide lightweight, modular security learning paths for developers. Encourage experimentation in secure sandboxes with audit trails.Consult security experts: Consider outsourcing your cybersecurity to an expert like Gcore to keep your app or AI safe.Secure innovation sustainably with GcoreVibe coding is here to stay, and for good reason. It unlocks creativity and accelerates delivery. But it also invites mistakes that attackers can exploit. Rather than fight the vibe, cybersecurity leaders must adapt: automating protections, partnering with devs, and building a culture where shipping fast doesn't mean shipping insecure.Want to secure your edge-built AI or fast-moving app infrastructure? Gcore’s Edge Security platform offers robust, low-latency protection with next-gen WAAP and DDoS mitigation to help you innovate confidently, even at speed. As AI and security experts, we understand the risks and rewards of vibe coding, and we’re ideally positioned to help you secure your workloads without slowing down development.Into vibe coding? Talk to us about how to keep it secure.

Qwen3 models available now on Gcore Everywhere Inference

We’ve expanded our model library for Gcore Everywhere Inference with three powerful additions from the Qwen3 series. These new models bring advanced reasoning, faster response times, and even better multilingual support, helping you power everything from chatbots and coding tools to complex R&D workloads.With Gcore Everywhere Inference, you can deploy Qwen3 models in just three clicks. Read on to discover what makes Qwen3 special, which Qwen3 model best suits your needs, and how to deploy it with Gcore today.Introducing the new Qwen3 modelsQwen3 is the latest evolution of the Qwen series, featuring both dense and Mixture-of-Experts (MoE) architectures. It introduces dual-mode reasoning, letting you toggle between “thinking” and “non-thinking” modes to balance depth and speed:Thinking mode (enable_thinking=True): The model adds a <think>…</think> block to reason step-by-step before generating the final response. Ideal for tasks like code generation or math where accuracy and logic matter.Non-thinking mode (enable_thinking=False): Skips the reasoning phase to respond faster. Best for straightforward tasks where speed is a priority.Model sizes and use casesWith three new sizes available, you can choose the level of performance required for your use case:Qwen3-14B: A 14B parameter model tuned for responsive, multilingual chat and instruction-following. Fast, versatile, and ready for real-time applications with lightning-fast responses.Qwen3-30B-A3B: Built on the Arch-3 backbone, this 30B model offers advanced reasoning and coding capabilities. It’s ideal for applications that demand deeper understanding and precision while balancing performance. It provides high-quality output with faster inference and better efficiency.Qwen3-32B: The largest Qwen3 model yet, designed for complex, high-performance tasks across reasoning, generation, and multilingual domains. It sets a new standard for what’s achievable with Gcore Everywhere Inference, delivering exceptional results with maximum reasoning power. Ideal for complex computation and generation tasks where every detail matters.ModelArchitectureTotal parametersActive parametersContext lengthBest suited forQwen3-14BDense14B14B128KMultilingual chatbots, instruction-following tasks, and applications requiring strong reasoning capabilities with moderate resource consumption.Qwen3-30B-A3BMoE30B3B128KScenarios requiring advanced reasoning and coding capabilities with efficient resource usage; suitable for real-time applications due to faster inference times.Qwen3-32BDense32B32B128KHigh-performance tasks demanding maximum reasoning power and accuracy; ideal for complex R&D workloads and precision-critical applications.How to deploy Qwen3 models with Gcore in just a few clicksGetting started with Qwen3 on Gcore Everywhere Inference is fast and frictionless. Simply log in to the Gcore Portal, navigate to the AI Inference section, and select your desired Qwen3 model. From there, deployment takes just three clicks—no setup scripts, no GPU wrangling, no DevOps overhead. Check out our docs to discover how it works.Deploying Qwen3 via the Gcore Customer Portal takes just three clicksPrefer to deploy programmatically? Use the Gcore API with your project credentials. We offer quick-start examples in Python and cURL to get you up and running fast.Why choose Qwen3 + Gcore?Flexible performance: Choose from three models tailored to different workloads and cost-performance needs.Immediate availability: All models are live now and deployable via portal or API.Next-gen architecture: Dense and MoE options give you more control over reasoning, speed, and output quality.Scalable by design: Built for production-grade performance across industries and use cases.With the latest Qwen3 additions, Gcore Everywhere Inference continues to deliver on performance, scalability, and choice. Ready to get started? Get a free account today to explore Qwen3 and deploy with Gcore in just a few clicks.Sign up free to deploy Qwen3 today

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.