Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
Under attack?

Products

Solutions

Resources

Partners

Why Gcore

  1. Home
  2. Blog
  3. Managed Kubernetes with GPU Worker Nodes for Faster AI/ML Inference

Managed Kubernetes with GPU Worker Nodes for Faster AI/ML Inference

  • By Gcore
  • November 23, 2023
  • 6 min read
Managed Kubernetes with GPU Worker Nodes for Faster AI/ML Inference

Currently, 48% of organizations use Kubernetes for AI/ML workloads, and the demand for such workloads also drives usage patterns on Kubernetes. Let’s look at the key technical reasons behind this trend, how AI/ML workloads benefit from running on GPU worker nodes in managed K8s clusters, and some considerations regarding GPU vendors and scheduling.

Why Kubernetes is Good for AI/ML

A number of features make Kubernetes popular and effective in the AI/ML realm:

  • Scalability. K8s enables seamless, on-demand scalability of AI/ML workloads. This is especially critical for inference workloads because they are more dynamic regarding resource utilization than training workloads, and can be resource-intensive. The latter means they often require frequent scaling up or down based on the volume of data being processed.
  • Automated scheduling. The ability to automatically schedule AI/ML workloads reduces the operational overhead for MLOps teams. It also improves the performance of AI/ML applications by ensuring they are scheduled to the nodes that have the required resources.
  • Resource utilization. K8s can help to optimize physical resource utilization for AI/ML workloads. It can dynamically and automatically allocate the required amounts of CPU, GPU, and RAM resources. This is critical due to the resource-intensive nature of these workloads and the potential for cost reduction.
  • Flexibility. With K8s, you can deploy AI/ML workloads across multiple infrastructures, including on-premises, public cloud, and edge cloud. This feature also makes Kubernetes a good option for organizations that need to deploy AI/ML workloads in hybrid or multicloud environments.
  • Portability. You can easily migrate Kubernetes-based AI/ML applications between different environments and installations. This is critical for deploying and managing AI/ML workloads in a hybrid infrastructure.

Use Cases

Here are some examples of how companies have adopted Kubernetes (K8s) for their AI/ML projects:

  • OpenAI has been an early adopter of K8s. In 2017, the company was running machine learning experiments on K8s clusters. With the K8s autoscaler, OpenAI could deploy such a project in a few days and scale it up to hundreds of GPUs in a week or two. Without the Kubernetes autoscaler, such a process would take months. As a result, OpenAI increased the number of AI experiments tenfold. In 2021, the company expanded its K8s infrastructure to 7,500 nodes for large ML models such as GPT-3, DALL-E and CLIP.
  • Shell uses a K8s-based platform Kubeflow to run tests and quickly experiment with ML models on laptops. Engineers can move these workloads from the test environment to production, and the workloads will function just the same. With Kubernetes, Shell builds thousands of ML models in two hours instead of a month. The time to write the underlying code is reduced from two weeks to four hours.
  • IKEA has developed an internal MLOps platform based on K8s to train ML models on-premises and get inference in the cloud. This allows the MLOps team to orchestrate different types of trained models and, ultimately, improve the customer experience.

Of course, these examples are not broadly representative. Most companies are not fully AI-focused like OpenAI and are not as large as IKEA. They can’t afford to train large AI/ML models from scratch, which takes time and money, but instead run pretrained models and integrate them with other internal services. In other words, these companies use AI/ML inference, not training.

Inference workloads tend to be more dynamic regarding resource utilization than training workloads because production clusters are more likely to experience user and traffic spikes. In such cases, the infrastructure needs to scale up and down quickly, whereas AI/ML training typically requires gradual scaling. Therefore, for AI/ML models that are already trained and deployed, the scalability and dynamic resource utilization of K8s are especially beneficial.

Why GPU Is Better than CPU for Worker Nodes

GPU worker nodes are a better fit for containerized AI/ML workloads than CPU worker nodes for the same reasons as for non-containerized workloads: GPU offers parallel processing capabilities and higher performance for AI/ML than CPUs.

Inference for AI/ML workloads running on GPU worker nodes can be faster than those running on CPU worker nodes due to the following factors:

  • The GPU’s memory architecture is specifically optimized for AI/ML processing, enabling higher memory bandwidth than CPUs.
  • GPUs often provide better computational performance than CPUs for AI/ML training and inference because they have more transistors to process data.

Kubernetes adds its own performance benefits to those of GPUs. In addition to hardware acceleration, AI/ML workloads running on GPU worker nodes get scalability and dynamic resource allocation. Kubernetes also includes plugins for GPU vendor support, making it easy to configure GPU resources for use by AI/ML workloads.

Figure 1. The simplified K8s cluster architecture with GPU worker node

With Kubernetes, you can manage GPU resources across multiple worker nodes. Containers consume GPU resources in essentially the same way as they consume CPU resources.

GPU Vendors Comparison

There are three GPU vendors available for Kubernetes: NVIDIA, AMD, and Intel. When choosing GPU vendors for worker nodes, it’s important to keep in mind that their compatibility with Kubernetes, tool ecosystem, performance, and cost can vary.

 NVIDIA GPU worker nodesAMD GPU worker nodesIntel GPU worker nodes
Compatibility with K8sExcellentGoodGood
Tools ecosystemExcellentGoodFair
PerformanceExcellentGoodFair
CostHighMediumMedium

Let’s compare the three vendors.

  • Compatibility with Kubernetes: NVIDIA is the most compatible with K8s. The company provides CUDA drivers, various container runtimes, and other tools and features that simplify GPU integration and management. AMD and Intel support for K8s is less mature and often requires custom configuration.
  • Tools ecosystem: NVIDIA has the best ecosystem of tools for AI/ML, thanks to software such as the GPU Operator and Container Toolkit, and ML frameworks adapted for NVIDIA GPUs, such as TensorFlow, PyTorch, and MXNet. AMD and Intel also have tools for AI/ML, but they are not as comprehensive as NVIDIA’s.
  • Performance: NVIDIA GPUs are known for their high performance on AI workloads, outperforming the competition on most MLPerf benchmarks. NVIDIA GPUs are ideal for demanding tasks such as deep learning and high-performance computing.
  • Cost: NVIDIA GPUs are the most expensive type of GPU worker node.
  • Flexibility: NVIDIA offers several features that make its GPU-based K8s clusters highly flexible in terms of management and resource utilization compared to its competitors:
    • Multi-instance GPU (MIG) mechanism for NVIDIA A100 GPU to allow a GPU to be securely partitioned into up to seven separate instances for better GPU utilization
    • Multicloud GPU clusters, which can be seamlessly managed and scaled as if deployed in a single cloud
    • Heterogeneous GPU and CPU clusters to simplify the training and management of distributed deep learning models
    • GPU metrics monitoring with Prometheus and visualization with Grafana
    • Support for multiple container runtimes, including Docker, CRI-O, and containers

In summary, NVIDIA GPU worker nodes are the best choice for AI/ML workloads in Kubernetes. They offer the best compatibility with K8s, the best tools ecosystem, and the best performance. That’s why we chose NVIDIA GPUs for Gcore Managed Kubernetes. Our customers get all the benefits of NVIDIA, including the highest performance level for faster training and inference of their AI/ML workloads.

Important Specifics of GPU Scheduling in Kubernetes

To enable GPU scheduling and allow pods to access its resources, you need to install a vendor-specific device plugin from your chosen GPU vendor — NVIDIA, AMD, or Intel.

Pods request GPU resources in the same way they request CPU resources. However, Kubernetes is less flexible with GPU than with CPU when it comes to configuring `limits` and `requests`. With `requests`, you set the amount of resources that a pod is guaranteed to get, such as a minimum quantity. With `limits`, you set the amount of resources that won’t be exceeded, for instance, a maximum quantity. When configuring a pod manifest for GPU requests, `limits` and `requests` should be equal, meaning that a pod won’t get more resources than guaranteed if, for example, the application needs them.

Also, by default, you can’t allocate part of a GPU or multiple GPUs to a container because of the way CPU allocation works. You can only allocate one full GPU per container. This limitation doesn’t help with resource economics. But NVIDIA has managed to overcome this. With its GPU, you can use either use:

  • Time-sharing GPUs, which work by sequentially assigning time intervals to shared containers on a physical GPU. This works for all NVIDIA GPUs.
  • Multi-instance GPUs, which allow a GPU to be divided into up to seven instances for better GPU utilization. This only works with the NVIDIA A100 GPU.

These two features help you to use NVIDIA GPU resources more efficiently and save money on renting GPU instances in the cloud. This is also a significant advantage over other GPU vendors.

Managed Kubernetes vs. Vanilla Kubernetes with GPU

A managed Kubernetes service can offer several advantages over vanilla (open source) Kubernetes for AI/ML workloads running on GPU worker nodes:

  • Flexible choice of GPUs. Managed K8s services typically provide support for GPU instances with various specifications. This makes it easier to choose the appropriate level of GPU acceleration for your AI/ML workloads.
  • Reduced operational overhead. Managed Kubernetes handles the everyday responsibilities of overseeing a Kubernetes cluster, like managing the control plane and implementing K8s updates. This enables you to focus on creating, deploying and managing AI/ML applications.
  • Scalability and reliability. Managed K8s services are typically designed with a strong focus on scalability and reliability, ensuring that your AI/ML workloads can adeptly handle fluctuating traffic and spikes in resource demand.

Gcore Managed Kubernetes with NVIDIA GPU Workers

Gcore Managed Kubernetes helps you to deploy Kubernetes clusters fast, without the need to maintain the underlying infrastructure and Kubernetes backend. The Gcore team controls the master nodes while you control only the worker nodes, reducing your operational burden. Worker nodes can be Gcore Virtual Machines or Bare Metal servers in various configurations, including those with NVIDIA GPU modules.

Conclusion

Managed Kubernetes with GPU worker nodes is a powerful and flexible combination for accelerating AI/ML inference. By taking advantage of both Kubernetes and GPUs, managed Kubernetes with GPU worker nodes can help you improve the performance and efficiency of your AI/ML workloads. The service also frees you from the need to maintain the underlying GPU infrastructure and most Kubernetes components.

Gcore Managed Kubernetes can boost your AI/ML workloads with GPU worker nodes on Bare Metal for faster inference and operational efficiency. We offer a 99.9% SLA with free production management and free egress traffic—at outstanding value for money.

Explore Managed Kubernetes

Related articles

Outpacing cloud‑native threats: How to secure distributed workloads at scale

The cloud never stops. Neither do the threats.Every shift toward containers, microservices, and hybrid clouds creates new opportunities for innovation…and for attackers. Legacy security, built for static systems, crumbles under the speed, scale, and complexity of modern cloud-native environments.To survive, organizations need a new approach: one that’s dynamic, AI-driven, automated, and rooted in zero trust.In this article, we break down the hidden risks of cloud-native architectures and show how intelligent, automated security can outpace threats, protect distributed workloads, and power secure growth at scale.The challenges of cloud-native environmentsCloud-native architectures are designed for maximum flexibility and speed. Applications run in containers that can scale in seconds. Microservices split large applications into smaller, independent parts. Hybrid and multi-cloud deployments stretch workloads across public clouds, private clouds, and on-premises infrastructure.But this agility comes at a cost. It expands the attack surface dramatically, and traditional perimeter-based security can’t keep up.Containers share host resources, which means if one container is breached, attackers may gain access to others on the same system. Microservices rely heavily on APIs to communicate, and every exposed API is a potential attack vector. Hybrid cloud environments create inconsistent security controls across platforms, making gaps easier for attackers to exploit.Legacy security tools, built for unchanging, centralized environments, lack the real-time visibility, scalability, and automated response needed to secure today’s dynamic systems. Organizations must rethink cloud security from the ground up, prioritizing speed, automation, and continuous monitoring.Solution #1: AI-powered threat detection forsmarter defensesModern threats evolve faster than any manual security process can track. Rule-based defenses simply can’t adapt fast enough.The solution? AI-driven threat detection.Instead of relying on static rules, AI models monitor massive volumes of data in real time, spotting subtle anomalies that signal an attack before real damage is done. For example, an AI-based platform can detect an unauthorized process in a container trying to access confidential data, flag it as suspicious, and isolate the threat within milliseconds before attackers can move laterally or exfiltrate information.This proactive approach learns, adapts, and neutralizes new attack vectors before they become widespread. By continuously monitoring system behavior and automatically responding to abnormal activity, AI closes the gap between detection and action, critical in cloud-native, regulated environments where even milliseconds matter.Solution #2: Zero trust as the new security baseline“Trust but verify” no longer cuts it. In a cloud-native world, the new rule is “trust nothing, verify everything”.Zero-trust security assumes that threats exist both inside and outside the network perimeter. Every request—whether from a user, device, or application—must be authenticated, authorized, and validated.In distributed architectures, zero trust isolates workloads, meaning even if attackers breach one component, they can’t easily pivot across systems. Strict identity and access management controls limit the blast radius, minimizing potential damage.Combined with AI-driven monitoring, zero trust provides deep, continuous verification, blocking insider threats, compromised credentials, and advanced persistent threats before they escalate.Solution #3: Automated security policies for scalingprotectionManual security management is impossible in dynamic environments where thousands of containers and microservices are spun up and down in real time.Automation is the way forward. AI-powered security policies can continuously analyze system behavior, detect deviations, and adjust defenses automatically, without human intervention.This eliminates the lag between detection and response, shrinks the attack window, and drastically reduces the risk of human error. It also ensures consistent security enforcement across all environments: public cloud, private cloud, and on-premises.For example, if a system detects an unusual spike in API calls, an automated security policy can immediately apply rate limiting or restrict access, shutting down the threat without impacting overall performance.Automation doesn’t just respond faster. It maintains resilience and operational continuity even in the face of complex, distributed threats.Unifying security across cloud environmentsSecuring distributed workloads isn’t just about having smarter tools, it’s about making them work together. Different cloud platforms, technologies, and management protocols create fragmentation, opening cracks that attackers can exploit. Security gaps between systems are as dangerous as the threats themselves.Modern cloud-native security demands a unified approach. Organizations need centralized platforms that pull real-time data from every endpoint, regardless of platform or location, and present it through a single management dashboard. This gives IT and security teams full, end-to-end visibility over threats, system health, and compliance posture. It also allows security policies to be deployed, updated, and enforced consistently across every environment, without relying on multiple, siloed tools.Unification strengthens security, simplifies operations, and dramatically reduces overhead, critical for scaling securely at cloud-native speeds. That’s why at Gcore, our integrated suite of products includes security for cloud, network, and AI workloads, all managed in a single, intuitive interface.Why choose Gcore for cloud-native security?Securing cloud-native workloads requires more than legacy firewalls and patchwork solutions. It demands dynamic, intelligent protection that moves as fast as your business does.Gcore Edge Security delivers robust, AI-driven security built for the cloud-native era. By combining real-time AI threat detection, zero-trust enforcement, automated responses, and compliance-first design, Gcore security solutions protect distributed applications without slowing down development cycles.Discover why WAAP is essential for cloud security in 2025

Announcing a new AI-optimized data center in Southern Europe

Good news for businesses operating in Southern Europe! Our newest cloud regions in Sines, Portugal, give you faster, more local access to the infrastructure you need to run advanced AI, ML, and HPC workloads across the Iberian Peninsula and wider region. Sines-2 marks the first region launched in partnership with Northern Data Group, signaling a new chapter in delivering powerful, workload-optimized infrastructure across Europe. And Sines-3 expands capacity and availability for the region.Strategically positioned in Portugal, Sines-2 and Sines-3 enhance coverage in Southern Europe, providing a lower-latency option for customers operating in or targeting this region. With the explosive growth of AI, machine learning, and compute-intensive workloads, these new regions are designed to meet escalating demand with cutting-edge GPU and storage capabilities.You can activate Sines-2 and Sines-3 for GPU Cloud or Everywhere Inference today with just a few clicks.Built for AI, designed to scaleSines-2 and Sines-3 bring with them next-generation infrastructure features, purpose-built for today's most demanding workloads:NVIDIA H100 GPUs: Unlock the full potential of AI/ML training, high-performance computing (HPC), and rendering workloads with access to H100 GPUs.VAST NFS (file sharing protocol) support: Benefit from scalable, high-throughput file storage ideal for data-intensive operations, research, and real-time AI workflows.IaaS portfolio: Deploy Virtual Machines, manage storage, and scale infrastructure with the same consistency and reliability as in our flagship regions.Organizations operating in Portugal, Spain, and nearby regions can now deploy workloads closer to end users, improving application performance. For finance, healthcare, public sector, and other organisations running sensitive workloads that must stay within a country or region, Sines-2 and Sines-3 are easy ways to access state-of-the-art GPUs with simplified compliance. Whether you're building AI models, running simulations, or managing rendering pipelines, Sines-2 and Sines-3 offer the performance, capacity, availability, and proximity you need.And best of all, servers are available and ready to deploy today.Run your AI workloads in Portugal todayWith these new Sines regions and our partnership with Northern Data Group, we're making it easier than ever for you to run AI workloads at scale. If you need speed, flexibility, and global reach, we're ready to power your next AI breakthrough.Unlock the power of Sines-2 and Sines-3 today

GTC Europe 2025: watch Seva Vayner on European AI trends

Inference is becoming Europe’s core AI workload. Telcos are moving fast on low-latency infrastructure. Data sovereignty is shaping every deployment decision.At GTC Europe, these trends were impossible to miss. The conversation has moved beyond experimentation to execution, with exciting, distinctly European priorities shaping conversations.Gcore’s own Seva Vayner, Product Director of Edge Cloud and AI, shared his take on this year’s event during GTC. He sees a clear shift in what European enterprises are asking for and what the ecosystem is ready to deliver.Scroll on to watch the interview and see where AI in Europe is heading.“It’s really a pleasure to see GTC in Europe”After years of global AI strategy being shaped primarily by the US and China, Europe is carving its own path. Seva notes that this year’s GTC Europe wasn’t just a regional spin-off. it marked the emergence of a distinctly European voice in AI development.“First of all, it's really a pleasure to see that GTC in Europe happened, and that a lot of European companies came together to have the conversation and build the ecosystem.”As Seva notes, the real excitement came from watching European players collaborate. The focus was less on following global trends and more on co-creating the region’s own AI trajectory.“Inference workloads will grow significantly in Europe”Inference was a throughline across nearly every session. As Seva points out, Europe is still at the early stages of adopting inference at scale, but the shift is happening fast.“Europe is only just starting its journey into inference, but we already see the trend. Over the next 5 to 10 years, inference workloads will grow significantly. That’s why GTC Europe is becoming a permanent, yearly event.”This growth won’t just be driven by startups. Enterprises, governments, and infrastructure providers are all waking up to the importance of real-time, regional inference capabilities.“There’s real traction. Companies are more and more interested in how to deliver low-latency inference. In a few years, this will be one of the most crucial workloads for any GPU cloud in Europe.”“Telcos are getting serious about AI”One of the clearest signs of maturity at GTC Europe was that telcos and CSPs are actively looking to deploy AI. And they’re asking the hard questions about how to integrate it into their infrastructure at a vast scale.“One of the most interesting things is how telcos are thinking about adopting AI workloads on their infrastructure to deliver low latency. Sovereignty is crucial, especially for customers looking to serve training or inference workloads inside their region. And also user experience: how can I get GPU capacity in clusters, or deliver inference in just a few clicks?”This theme—fast, sovereign, self-service AI—popped up again and again. Telcos and service providers want frictionless deployment and local control.“Companies are struggling most with data”While model deployment and infrastructure strategy took center stage, Seva reminds us that data processing and storage remains the bottleneck. Enterprises know they need to adopt AI, but they’re still navigating where and how to store and process the data that fuels it.“One of the biggest struggles for end customers is the data: where it’s processed, where it’s stored, and what kind of capabilities are available. From a European perspective, we already see more and more companies looking for sovereign data privacy and simple, mature solutions for end users.”That’s a familiar challenge for enterprises operating under GDPR, NIS2, and other compliance frameworks. The new wave of AI infrastructure has to be built for performance and for trust.AI in Europe: responsible, scalable, and localSeva’s key takeaway is that AI in Europe is no longer about catching up, it’s about doing it differently. The questions have changed from “Should we do AI?” to “How do we scale it responsibly, reliably, and locally?”From sovereign deployment to edge-first infrastructure, GTC Europe 2025 showed that inference is the foundation of how European businesses plan to run AI. “The ecosystem is coming together,” explains Seva. “And the next five years will be crucial for defining how AI will work: not just in the cloud, but everywhere.”If you’re looking to reduce latency, cut costs, and stay compliant while deploying AI in production, we invite you to download our free ebook, The inference optimization playbook.Download our free inference optimization playbook

Introducing FastEdge Triggers: real-time edge logic

When you're building real-time applications, whether for streaming platforms, SaaS dashboards, or security-sensitive services, you need content that adapts on the fly. Blocking suspicious IPs, injecting personalized content, transforming media on the edge—these should be fast, scalable, and reliable.Until now, they weren't.Developers and technical teams often had to work across multiple departments to create brittle, hardcoded solutions. Each use case, like watermarking video or rewriting headers, required a custom integration. There was no easy way to run logic dynamically at the edge. That changes with FastEdge Triggers.Real-time logic, built into the edgeFastEdge Triggers let you execute custom serverless logic at key moments in the HTTP lifecycle:on_request_headerson_request_bodyon_response_headerson_response_bodyFastEdge is built on the proxy-wasm standard, making it easy to adapt existing proxy-wasm applications (e.g., for Envoy or Kong) for use with Gcore. These trigger types align directly with proxy-wasm conventions, meaning less friction for developers familiar with modern proxy architectures.This means that you can now:Authenticate users' tokens, such as JWTBlock access by IP, region, or user agentInject CSS, HTML, or JavaScript into responsesTransform images or convert markdown to HTML before deliveryAdd security tokens or watermarks to video contentRewrite or sanitize request headers and bodiesNo backend round-trips. No manual routing. Just real-time, programmable edge behavior, backed by Gcore's global infrastructure.While FastEdge enables instant logic execution at the edge, response-stage triggers (on_response_headers and on_response_body) naturally depend on receiving data from the origin before acting. Even so, transformations happen at the edge, reducing backend load and improving overall efficiency.Our architecture means that FastEdge logic is executed in ultra-low-latency environments, tightly coupled with CDN. Triggers can be layered across multiple stages of a request without performance degradation.Built for developersFastEdge Triggers were built to solve three core pain points for technical teams:Hard to scale: Custom logic used to require bespoke, team-specific workaroundsHard to maintain: Even single-team solutions became brittle without proper edge infrastructureLimited flexibility: Legacy CDN logic couldn't support complex, dynamic behaviorWith FastEdge, developers have full control: no DevOps bottlenecks, no workarounds, no compromises. Logic runs at the edge, not your origin, minimizing backend exposure. FastEdge apps execute in isolated, sandboxed environments, reducing the risk of vulnerabilities that might otherwise be introduced when logic runs on central infrastructure.How it works behind the scenesEach FastEdge application is written in Rust or AssemblyScript and connected to the HTTP request lifecycle through Gcore's configuration interface. Apps are linked to trigger types through the CDN resource settings page in the Gcore Customer Portal.Configuring FastEdge Triggers from the CDN resource settings screen in the Gcore Customer PortalHere's what happens under the hood:You assign a FastEdge app to a trigger point.Our Core Proxy detects that trigger and automatically routes execution through your custom logic.The result is returned before hitting cache or origin, modified, enriched, and secured.This flow is deeply integrated with our CDN, delivering minimal latency with zero friction.A sequence diagram showing how FastEdge Triggers works under the hood A real-life use case: markdown to HTML at the edgeHere's a real-world example that shows how FastEdge Triggers can power multi-step content transformation without a single backend server.One customer wanted to serve Markdown-based documentation as styled HTML, without spinning up infrastructure. Using this FastEdge app written in Rust, they achieved just that.The app listens at three trigger points: on_request_headers, on_response_headers, and on_response_bodyIt detects requests for .md files and converts them on the flyThe HTML is served directly via CDN, no origin compute requiredYou can see it live here:README renderedTerraform docs renderedThis use case showcases FastEdge's ability to orchestrate multi-stage logic at the edge: ideal for serverless documentation, lightweight rendering, or content transformation pipelines.Ready to build smarter at the edge?FastEdge Triggers are available now for all FastEdge customers. If you're looking to modernize your edge logic, simplify architecture, and ship faster with fewer backend dependencies, FastEdge is built for you.Reach out to your account manager or contact us to activate FastEdge Triggers in your environment.Try Fastedge Triggers

Gcore and Orange Business launch innovation program piloting joint solution to deliver sovereign inference as a service

Gcore and Orange Business have kicked off a strategic co-innovation program with the mission to deliver a scalable, production-grade AI inference service that is sovereign by design. By combining Orange Business’ secure, trusted cloud infrastructure and Gcore’s AI inference private deployment service, the collaboration empowers European enterprises and public sector organizations to run inference workloads at scale, without compromising on latency, control, or compliance.Gcore’s AI inference private deployment service is already live on Orange Business’ Cloud Avenue infrastructure. Selected enterprises across industries are actively testing it in real-world scenarios. These pilot customers are exploring how fast, secure, and compliant inference can accelerate their AI projects, cut deployment times, and reduce infrastructure overhead.The prototype will be demonstrated at NVIDIA GTC Paris, at the Taiga Cloud booth G26. Stop by any time to see it in action.The inference supercycle is underwayBy 2030, inference will comprise 70% of enterprise AI workloads. Telcos are well positioned to lead this shift due to their dense edge presence, licensed national data infrastructure, and long-standing trust relationships.Gcore’s inference solution provides a sovereign, edge-native inference layer. It enables users to serve real-time, GPU-intensive applications like agentic AI, trusted LLMs, computer vision, and predictive analytics, all while staying compliant with Europe’s evolving data and AI governance frameworks.From complexity to three clicksEnterprise AI doesn’t need to be hard. Deploying inference workloads at scale used to demand Kubernetes fluency, large MLOps teams, and costly trial-and-error.Now? It’s just three clicks:Pick a model: Choose from NVIDIA NIMs, open source, or proprietary libraries.Choose a region: Select one of Orange Business’ accredited EU data centers.Deploy: See your workloads go live in under 10 seconds.Enterprises can launch inference projects faster, test ideas more quickly, and deliver production-ready AI services without spending months on ML plumbing.Explore our blog to watch a demo showing how enterprises can deploy inference workloads in just three clicks and ten seconds.Sovereign by designAll model data, logs, and inference results are stored exclusively within Orange Business’ own data centers in France, Germany, Norway, and Sweden. Cross-border data transfer is opt-in only, helping ensure alignment with GDPR, sector-specific regulations, and the forthcoming EU AI Act.This platform is built for trust, transparency, and sovereignty by default. Customers maintain full control over their data, with governance baked into every layer of the deployment.Performance without trade-offsGcore’s AI inference solution avoids the latency spikes, cold starts, and resource waste common in traditional cloud AI setups. Key design features include:Smart GPU routing: Directs each request to the nearest in-region GPU, delivering real-time performance with sub-50ms latency.Pre-loaded models: Reduces cold start delays and improves response times.Secure multi-tenancy: Isolates customer data while maximizing infrastructure efficiency.The result is a production-ready inference platform optimized for both performance and compliance.Powering the future of AI infrastructureThis partnership marks a step forward for Europe’s sovereign AI capabilities. It highlights how telcos can serve as the backbone of next-generation AI infrastructure, hosting, scaling, and securing workloads at the edge.With hundreds of edge POPs, trusted national networks, and deep ties across vertical industries, Orange Business is uniquely positioned to support a broad range of use cases, including real-time customer service AI, fraud detection, healthcare diagnostics, logistics automation, and public sector digital services.What’s next: validating real-world performanceThis phase of the Gcore and Orange Business program is focused on validating the solution through live customer deployments and performance benchmarks. Orange Business will gather feedback from early access customers to shape its future sovereign inference service offering. These insights will drive refinements and shape the roadmap ahead of a full commercial launch planned for later this year.Gcore and Orange Business are committed to delivering a sovereign inference service that meets Europe’s highest standards for speed, simplicity, and trust. This co-innovation program lays the foundation for that future.Ready to discover how Gcore and Orange Business can deliver sovereign inference as a service for your business?Request a preview

Why on-premises AI is making a comeback

In recent years, cloud AI infrastructure has soared in popularity. With its scalability and ease of deployment, it’s no surprise that organizations rushed to transfer their data to the cloud in a bid to become “cloud-first.”But now, the tide is turning.As AI workloads grow more complex and regulatory pressures increase, many companies are reconsidering their reliance on cloud and turning back toward on-premises AI infrastructure.Rather than doubling down on the cloud, organizations are diversifying—adopting multi-cloud models, sovereign cloud environments, and even hybrid or fully on-prem setups. The era of a single cloud provider handling everything is coming to an end. Why? Control, security, and performance are hard to find in the public cloud.Here’s why more businesses are bringing AI back in-house.#1 Enhanced data security and controlData security remains one of the most urgent concerns driving the return to on-prem infrastructure.For sensitive or high-priority workloads—common in sectors like finance, healthcare, and government—keeping data off the cloud is often non-negotiable. Cloud computing inherently increases risk by exposing data to shared environments, wider attack surfaces, and complex supply chains.Choosing a trusted cloud provider can mitigate some of those risks. But it can’t replace the peace of mind that comes from keeping sensitive data in-house.With on-premises AI, organizations gain fine-grained access control. Encryption keys remain internal and breach exposure shrinks dramatically. It’s also much easier to stay compliant with privacy laws when data never leaves your own secure perimeter.For industries where trust and confidentiality are everything, on-prem solutions offer full visibility into where and how data is stored and processed.#2 Performance enhancement and latency reductionLatency matters—especially in AI.On-premises AI systems excel in environments that require real-time performance and heavy compute loads. Processing data locally avoids the physical delays caused by transferring it across the internet to a cloud data center.By eliminating long-haul network hops, companies get near-instant access to computing resources. They also get to fine-tune their internal networks—using private fiber, low-hop switching, and other low-latency optimizations that cloud customers can’t control.Unlike multi-tenant cloud platforms, on-prem resources aren’t shared. That means consistently low, predictable latency.This is vital for use cases where milliseconds—or even microseconds—make a difference: autonomous vehicles, real-time analytics, robotic control systems, and high-speed trading. Fast feedback loops and localized processing enable better outcomes, tighter control, and faster decision-making at the edge.#3 Regulatory compliance and data sovereigntyAround the world, data privacy regulations are tightening. For most organizations, compliance isn’t optional.On-premises infrastructure helps keep data safely inside the organization’s network. This supports data sovereignty, ensuring that sensitive information remains subject only to local laws—not the policies of another country’s cloud provider.It's also a powerful hedge against geopolitical instability.While hyperscalers operate globally, they’re always headquartered somewhere. That makes their infrastructure vulnerable to political shifts, sanctions, or changes in international data law. Governments may require them to restrict access, share data, or cut off services entirely—especially to organizations in sanctioned or adversarial jurisdictions.Businesses relying on these providers risk disruption when regulations change. On-premises infrastructure, by contrast, offers reliable continuity and greater control—especially in uncertain times.#4 Cost control and operational benefitsCloud pricing may look flexible, but costs can escalate quickly.Data transfers, storage, and compute spikes all add up—fast. In contrast, on-premises infrastructure provides a predictable Total Cost of Ownership (TCO). Although upfront CapEx is higher, OpEx remains more stable over time.Organizations can invest in high-performance hardware tailored to their specific needs and amortize those costs across years. That means no surprise bills, no sudden price hikes, and no dependence on vendor pricing models.Of course, running on-prem infrastructure comes with its own challenges. It demands specialized teams for deployment, maintenance, and support. These experts are costly to recruit and retain—but they’re critical to ensure uptime, security, and performance.Still, for companies with relatively stable compute and storage needs, the long-term savings often outweigh the initial setup effort. On-prem also integrates more smoothly into existing IT workflows, without the need for internet access or additional network setup—another operational bonus.#5 Proactive threat detection and automated responsesOn-premises AI sometimes enables smarter, more customized security.Advanced platforms can continuously analyze live data streams using machine learning to detect anomalies and predict threats. When something suspicious is flagged, the system can respond instantly by quarantining data, blocking traffic, and alerting security teams.That kind of automation is essential for minimizing damage and downtime.With full infrastructure control, organizations can deploy bespoke monitoring systems that align with their threat models. Deep packet inspection, real-time anomaly detection, and behavioral analytics can be easier to configure and maintain on-prem than in shared cloud environments.These systems can also work seamlessly with WAAP and DDoS tools to detect and neutralize threats before they spread. The key is flexibility: whether on-prem or cloud-based, AI-driven security should adapt to your architecture and threat landscape, not the other way around.End-to-end visibility can give security teams a clearer picture and faster response options than generic, one-size-fits-all public cloud security tools.How to combine eon-premises control with cloud scalabilityLet’s be clear: on-premises AI isn’t perfect. It demands upfront investment. It requires skilled personnel to deploy and manage systems. And integrating AI into legacy environments takes thoughtful planning.But today’s tools are helping bridge those gaps. Modern platforms reduce the need for constant manual intervention. They support real-time updates to threat models and detection logic. As a result, security teams can spend more time on strategy and less on maintenance.Meanwhile, the cloud still plays an important role. It offers faster access to new tools, software updates, and next-gen GPU hardware.That’s why many organizations are opting for a hybrid model.Our recommendation: Keep your sensitive, high-priority workloads on-prem. Use the cloud for elastic scale and innovation. Together, they deliver the best of both worlds: performance, control, compliance, and flexibility.Secure your digital infrastructure with Gcore on-premises AI inferenceWhether you’re protecting sensitive data or running high-demand workloads, on-premises AI gives you the control and confidence you need. Securing sensitive data and managing high-demand workloads requires a level of control, performance, and predictability that only on-premises AI infrastructure delivers.Gcore Everywhere Inference Private Deployment makes it easier than ever to bring powerful serverless AI inference capabilities directly into your physical environment. Designed for scalable global performance, Everywhere Inference enables robust and secure multi-tenant AI inference deployments across on-prem and cloud environments, helping you meet data sovereignty requirements, reduce latency, and streamline deployment.Talk to us about your on-prem AI plans

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.