Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
Under attack?

Products

Solutions

Resources

Partners

Why Gcore

  1. Home
  2. Blog
  3. A Comparative Analysis of NVIDIA A100 Vs. H100 Vs. L40S Vs. H200

A Comparative Analysis of NVIDIA A100 Vs. H100 Vs. L40S Vs. H200

  • By Gcore
  • December 1, 2023
  • 4 min read
A Comparative Analysis of NVIDIA A100 Vs. H100 Vs. L40S Vs. H200

Table of contents

Try Gcore AI

Try for free

NVIDIA recently announced the 2024 release of the NVIDIA HGX™ H200 GPU—a new, supercharged addition to its leading AI computing platform. Gcore is excited about the announcement of the H200 GPU because we use the A100 and H100 GPUs to power up our AI GPU cloud infrastructure and look forward to adding the L40S GPUs to our AI GPU configurations in Q1-2024. So we consider this the right time to share a comparative analysis of the NVIDIA GPUs: the current generation A100 and H100, the new-generation L40S, and the forthcoming H200.

Comparison of A100 Vs. H100 Vs. L40S Vs. H200

The NVIDIA A100, H100, L40S, and H200 represent some of the most advanced and powerful GPUs in the company’s lineup. They’re designed specifically for professional, enterprise, and data center applications, and they feature architectures and technologies optimized for computational tasks, AI, and data processing. Let’s see how they stack up against each other on key technical specifications.

SpecificationA100H100L40SH200
ArchitectureAmpereHopperAda LovelaceHopper
Release Year2020202220232024
FP649.7 TFLOPS34 TFLOPSData not available34 TFLOPS
FP64 Tensor Core19.5 TFLOPS67 TFLOPSData not available67 TFLOPS
FP3219.5 TFLOPS67 TFLOPS91.6 TFLOPS67 TFLOPS
TF32 Tensor Core312 TFLOPS989 TFLOPS183 | 366* TFLOPS989 TFLOPS*
BFLOAT16 Tensor Core624 TFLOPS1,979 TFLOPS362.05 | 733* TFLOPS1,979 TFLOPS*
FP16 Tensor Core624 TFLOPS1,979 TFLOPS362.05 | 733* TFLOPS1,979 TFLOPS*
FP8 Tensor CoreNot applicable3,958 TFLOPS733 | 1,466* TFLOPS3,958 TFLOPS*
INT8 Tensor Core1248 TOPS3,958 TOPS733 | 1,466* TFLOPS3,958 TFLOPS*
INT4 Tensor CoreData not availableData not available733 | 1,466* TFLOPSData not available
GPU Memory80 GB HBM2e80 GB48GB GDDR6 with ECC141GB HBM3e
GPU Memory Bandwidth2,039 Gbps3.35 Tbps864 Gbps4.8 Tbps
DecodersNot applicable7 NVDEC 7 JPEGNot applicable7 NVDEC 7 JPEG
Max Thermal Design Power (TDP)400WUp to 700W (configurable)350WUp to 700W (configurable)
Multi-Instance GPUsUp to 7 MIGs @ 10 GBUp to 7 MIGs @ 10 GB eachNoUp to 7 MIGs @16.5 GB each
Form FactorSXMSXM4.4“ (H) x 10.5” (L), dual slotSXM**
InterconnectNVLink: 600 GB/s PCIe Gen4: 64 GB/sNVLink: 900GB/s PCIe Gen5: 128GB/sPCIe Gen4 x16: 64GB/s bidirectionalNVIDIA NVLink®: 900GB/s PCIe Gen5: 128GB/s
Server OptionsNVIDIA HGX™ A100-Partner and NVIDIA-Certified Systems with 4,8, or 16 GPUs NVIDIA DGX™ A100 with 8 GPUsNVIDIA HGX H100 Partner and NVIDIA-Certified Systems™ with 4 or 8 GPUs NVIDIA DGX H100 with 8 GPUsData not availableNVIDIA HGX™ H200 partner and NVIDIA-Certified Systems™ with 4 or 8 GPUs
NVIDIA AI EnterpriseIncludedAdd-onData not availableAdd-on
CUDA® Cores6,91216,89618,176Data not available

* With sparsity.
** Preliminary specification. May be subject to change.
Source: https://resources.nvidia.com/l/en-us-gpu

Based on the above comparison, we’re expecting the H200 to outperform the previous and current generation of NVIDIA data center GPUs across use cases. The current generation—the H100—is a close match to the H200, with near identical multi-precision computing performance. So, while H200s will offer improvements, H100s will remain a top option. As for the A100, it’s the least-performant GPU when compared to its successors, while still offering solid performance for certain tasks.

The L40S differs from the A100 and H100 because it includes Third-Gen RT cores (142) with 212 TFLOPS of RT core performance and 568 Fourth-Gen Tensor Cores. However, we don’t have sufficient information about these parameters for H200 yet, so it remains to be seen exactly how the L40S and H200 will stack up.

NVIDIA GPUs At A Glance

Let’s check out each GPU in turn to discover more about its features, performance, and the use cases where it shines.

NVIDIA A100

The NVIDIA A100 GPU was the first GPU to feature the Ampere architecture back in 2020. Prior to the release of H100 in 2022, the A100 was a leading GPU platform. It offered a substantial leap in performance compared to its predecessors thanks to improved Tensor cores for AI, increased CUDA core count for parallel processing, enhanced memory, and the fastest-ever memory bandwidth at 2 Tbps. It supports multi-instance GPU (MIG) that allows a single A100 GPU to be partitioned into smaller, independent GPUs to maximize resource allocation and efficiency in cloud and data center environments.

Despite being surpassed in performance by newer models, the A100 GPU remains a great choice for training complex neural networks as part of deep learning and AI learning tasks because of its powerful Tensor Cores and high computational throughput. It also shines at AI inference tasks such as speech recognition, image classification, recommendation systems, data analytics and big data processing, scientific computing and simulations, and high-performance computing (HPC) tasks including genome sequencing and drug discovery.

NVIDIA H100

The NVIDIA H100 GPU can handle the most demanding AI workloads and large-scale data processing tasks. H100 includes next-generation Tensor Cores, which dramatically enhance AI training and inference speeds. It also supports double precision (FP64), single precision (FP32), half precision (FP16), and integer (INT8) compute tasks.

The H100 offers a substantial performance boost over the A100, including the following benefits:

  • Six times faster—capable of four petaflops for FP8
  • 50% memory increase—uses HBM3 high-bandwidth memory up to 3 Tbps with external connectivity nearly reaching 5 Tbps
  • Up to six times faster model transformer training thanks to its new Transformer Engine

While H100 covers similar use cases and performance features as the A100, the H100 GPU can handle massive AI models, including those using transformer architectures and more complex scientific simulations. The H100 GPU is also a superior choice for real-time and responsive AI applications, like advanced conversational AI and real-time translations.

NVIDIA L40S

The L40S is one of NVIDIA’s most powerful GPUs, released in Q4 of 2023 (and joining Gcore’s infrastructure right away.) It’s designed to handle the next generation of data center workloads: generative AI, large language model (LLM) inference and training, 3D graphics, rendering, video, and scientific simulations.

NVIDIA L40S delivers up to 5x higher inference performance and up to 2x real-time ray-tracing (RT) performance compared to previous-generation GPUs, like the A100 and H100. The 48GB of GDDR6 memory with ECC (Error Correcting Code) plays a crucial role in maintaining data integrity in high-performance computing environments. It also comes equipped with over 18,000 CUDA cores—the parallel processors that are key to handling complex computational tasks.

NVIDIA H200

The NVIDIA H200 is the latest in NVIDIA’s lineup of GPUs, scheduled to be shipped during Q2-2024. It’s the first GPU to offer 141 GB of HBM3e memory at 4.8 Tbps—nearly double the capacity of the NVIDIA H100 Tensor Core GPU with 1.4x more memory bandwidth. The latter is relevant in high-performance computing and results in up to 110x faster time-to-results compared to CPUs. Inference speed is double that of H100 GPUs when handling Llama2 70B inference.

The H200 is set to play a critical role in Artificial Intelligence of Things (AIoT) for edge computing and IoT applications. You can also expect the highest available GPU performance from H200s across application workloads, including LLP training and inference for the largest models beyond 175 billion parameters, and in generative AI and HPC applications.

Conclusion

Based on the initial specifications and preliminary performance benchmarks, the NVIDIA HGX™ H200 seems a significant step forward from A100 and H100 GPUs in terms of overall performance, energy savings, and TCO (total cost of ownership). We hope this comparative guide will help you to choose the right NVIDIA data center GPU as the ideal solution for solving your business problems in deep learning and AI, HPC, graphics, or virtualization in the data center or at the edge.

Gcore offers various AI GPU configurations for bare metal servers and virtual machines based on A100 and H100 GPUs. In addition, our Managed Kubernetes platform allows you to use bare metal servers and virtual machines with A100 and H100 GPUs as worker nodes. We’ll soon add more AI GPU configurations based on the latest L40S GPUs—stay tuned for updates!

Get AI GPU

Table of contents

Try Gcore AI

Try for free

Related articles

How gaming studios can use technology to safeguard players

Online gaming can be an enjoyable and rewarding pastime, providing a sense of community and even improving cognitive skills. During the pandemic, for example, online gaming was proven to boost many players’ mental health and provided a vital social outlet at a time of great isolation. However, despite the overall benefits of gaming, there are two factors that can seriously spoil the gaming experience for players: toxic behavior and cyber attacks.Both toxic behavior and cyberattacks can lead to players abandoning games in order to protect themselves. While it’s impossible to eradicate harmful behaviors completely, robust technology can swiftly detect and ban bullies as well as defend against targeted cyberattacks that can ruin the gaming experience.This article explores how gaming studios can leverage technology to detect toxic behavior, defend against cyber threats, and deliver a safer, more engaging experience for players.Moderating toxic behavior with AI-driven technologyToxic behavior—including harassment, abusive messages, and cheating—has long been a problem in the world of gaming. Toxic behavior not only affects players emotionally but can also damage a studio’s reputation, drive churn, and generate negative reviews.The online disinhibition effect leads some players to behave in ways they may not in real life. But even when it takes place in a virtual world, this negative behavior has real long-term detrimental effects on its targets.While you can’t control how players behave, you can control how quickly you respond.Gaming studios can implement technology that makes dealing with toxic incidents easier and makes gaming a safer environment for everyone. While in the past it may have taken days to verify a complaint about a player’s behavior, today, with AI-driven security and content moderation, toxic behavior can be detected in real time, and automated bans can be enforced. The tool can detect inappropriate images and content and includes speech recognition to detect derogatory or hateful language.In gaming, AI content moderation analyzes player interactions in real time to detect toxic behavior, harmful content, and policy violations. Machine learning models assess chat, voice, and in-game media against predefined rules, flagging or blocking inappropriate content. For example, let’s say a player is struggling with in-game harassment and cheating. With AI-powered moderation tools, chat logs and gameplay behavior are analyzed in real time, identifying toxic players for automated bans. This results in healthier in-game communities, improved player retention, and a more pleasant user experience.Stopping cybercriminals from ruining the gaming experienceAnother factor negatively impacting the gaming experience on a larger scale is cyberattacks. Our recent Radar Report showed that the gaming industry experienced the highest number of DDoS attacks in the last quarter of 2024. The sector is also vulnerable to bot abuse, API attacks, data theft, and account hijacking.Prolonged downtime damages a studio’s reputation—something hackers know all too well. As a result, gaming platforms are prime targets for ransomware, extortion, and data breaches. Cybercriminals target both servers and individual players’ personal information. This naturally leads to a drop in player engagement and widespread frustration.Luckily, security solutions can be put in place to protect gamers from this kind of intrusion:DDoS protection shields game servers from volumetric and targeted attacks, guaranteeing uptime even during high-profile launches. In the event of an attack, malicious traffic is mitigated in real-time, preventing zero downtime and guaranteeing seamless player experiences.WAAP secures game APIs and web services from bot abuse, credential stuffing, and data breaches. It protects against in-game fraud, exploits, and API vulnerabilities.Edge security solutions reduce latency, protecting players without affecting game performance. The Gcore security stack helps ensure fair play, protecting revenue and player retention.Take the first steps to protecting your customersGaming should be a positive and fun experience, not fraught with harassment, bullying, and the threat of cybercrime. Harmful and disruptive behaviors can make it feel unsafe for everyone to play as they wish. That’s why gaming studios should consider how to implement the right technology to help players feel protected.Gcore was founded in 2014 with a focus on the gaming industry. Over the years, we have thwarted many large DDoS attacks and continue to offer robust protection for companies such as Nitrado, Saber, and Wargaming. Our gaming specialization has also led us to develop game-specific countermeasures. If you’d like to learn more about how our cybersecurity solutions for gaming can help you, get in touch.Speak to our gaming solutions experts today

Gcore and Northern Data Group partner to transform global AI deployment

Gcore and Northern Data Group have joined forces to launch a new chapter in enterprise AI. By combining high-performance infrastructure with intelligent software, the commercial and technology partnership will make it dramatically easier to deploy AI applications at scale—wherever your users are. At the heart of this exciting new partnership is a shared vision: global, low-latency, secure AI infrastructure that’s simple to use and ready for production.Introducing the Intelligence Delivery NetworkAI adoption is accelerating, but infrastructure remains a major bottleneck. Many enterprises discover blockers regarding latency, compliance, and scale, especially when deploying models in multiple regions. The traditional cloud approach often introduces complexity and overhead just when speed and simplicity matter most.That’s where the Intelligence Delivery Network (IDN) comes in.The IDN is a globally distributed AI network built to simplify inference at the edge. It combines Northern Data’s state-of-the-art infrastructure with Gcore Everywhere Inference to deliver scalable, high-performance AI across 180 global points of presence.By locating AI workloads closer to end users, the IDN reduces latency and improves responsiveness—without compromising on security or compliance. Its geo-zoned, geo-balanced architecture ensures resilience and data locality while minimizing deployment complexity.A full AI deployment toolkitThe IDN is a full AI deployment toolkit built on Gcore’s cloud-native platform. The solution offers a vertically integrated stack designed for speed, flexibility, and scale. Key components include the following:Managed Kubernetes for orchestrationA container-based deployment engine (Docker)An extensive model library, supporting open-source and custom modelsEverywhere Inference, Gcore’s software for distributing inferencing across global edge points of presenceThis toolset enables fast, simple deployments of AI workloads—with built-in scaling, resource management, and observability. The partnership also unlocks access to one of the world’s largest liquid-cooled GPU clusters, giving AI teams the horsepower they need for demanding workloads.Whether you’re building a new AI-powered product or scaling an existing model, the IDN provides a clear path from development to production.Built for scale and performanceThe joint solution is built with the needs of enterprise customers in mind. It supports multi-tenant deployments, integrates with existing cloud-native tools, and prioritizes performance without sacrificing control. Customers gain the flexibility to deploy wherever and however they need, with enterprise-grade security and compliance baked in.Andre Reitenbach, CEO of Gcore, comments, “This collaboration supports Gcore’s mission to connect the world to AI anywhere and anytime. Together, we’re enabling the next generation of AI applications with low latency and massive scale.”“We are combining Northern Data’s heritage of HPC and Data Center infrastructure expertise, with Gcore’s specialization in software innovation and engineering.” says Aroosh Thillainathan, Founder and CEO of Northern Data Group. “This allows us to accelerate our vision of delivering software-enabled AI infrastructure across a globally distributed compute network. This is a key moment in time where the use of AI solutions is evolving, and we believe that this partnership will form a key part of it.”Deploy AI smarter and faster with Gcore and Northern Data GroupAI is the new foundation of digital business. Deploying it globally shouldn’t require a team of infrastructure engineers. With Gcore and Northern Data Group, enterprise teams get the tools and support they need to run AI at the edge at scale and at speed.No matter what you and your teams are trying to achieve with AI, the new Intelligence Delivery Network is built to help you deploy smarter and faster.Read the full press release

How to achieve compliance and security in AI inference

AI inference applications today handle an immense volume of confidential information, so prioritizing data privacy is paramount. Industries such as finance, healthcare, and government rely on AI to process sensitive data—detecting fraudulent transactions, analyzing patient records, and identifying cybersecurity threats in real time. While AI inference enhances efficiency, decision-making, and automation, neglecting security and compliance can lead to severe financial penalties, regulatory violations, and data breaches. Industries handling sensitive information—such as finance, healthcare, and government—must carefully manage AI deployments to avoid costly fines, legal action, and reputational damage.Without robust security measures, AI inference environments present a unique security challenge as they process real-time data and interact directly with users. This article explores the security challenges enterprises face and best practices for guaranteeing compliance and protecting AI inference workloads.Key inference security and compliance challengesAs businesses scale AI-powered applications, they will likely encounter challenges in meeting regulatory requirements, preventing unauthorized access, and making sure that AI models (whether proprietary or open source) produce reliable and unaltered outputs.Data privacy and sovereigntyRegulations such as GDPR (Europe), CCPA (California), HIPAA (United States, healthcare), and PCI DSS (finance) impose strict rules on data handling, dictating where and how AI models can be deployed. Businesses using public cloud-based AI models must verify that data is processed and stored in appropriate locations to avoid compliance violations.Additionally, compliance constraints restrict certain AI models in specific regions. Companies must carefully evaluate whether their chosen models align with regulatory requirements in their operational areas.Best practices:To maintain compliance and avoid legal risks:Deploy AI models in regionally restricted environments to keep sensitive data within legally approved jurisdictions.Use Smart Routing with edge inference to process data closer to its source, reducing cross-border security risks.Model security risksBad actors can manipulate AI models to produce incorrect outputs, compromising their reliability and integrity. This is known as adversarial manipulation, where small, intentional alterations to input data can deceive AI models. For example, researchers have demonstrated that minor changes to medical images can trick AI diagnostic models into misclassifying benign tumors as malignant. In a security context, attackers could exploit these vulnerabilities to bypass fraud detection in finance or manipulate AI-driven cybersecurity systems, leading to unauthorized transactions or undetected threats.To prevent such threats, businesses must implement strong authentication, encryption strategies, and access control policies for AI models.Best practices:To prevent adversarial attacks and maintain model integrity:Enforce strong authentication and authorization controls to limit access to AI models.Encrypt model inputs and outputs to prevent data interception and tampering.Endpoint protection for AI deploymentsThe security of AI inference does not stop at the model level. It also depends on where and how models are deployed.For private deployments, securing AI endpoints is crucial to prevent unauthorized access.For public cloud inference, leveraging CDN-based security can help protect workloads against cyber threats.Processing data within the country of origin can further reduce compliance risks while improving latency and security.AI models rely on low-latency, high-performance processing, but securing these workloads against cyber threats is as critical as optimizing performance. CDN-based security strengthens AI inference protection in the following ways:Encrypts model interactions with SSL/TLS to safeguard data transmissions.Implements rate limiting to prevent excessive API requests and automated attacks.Enhances authentication controls to restrict access to authorized users and applications.Blocks bot-driven threats that attempt to exploit AI vulnerabilities.Additionally, CDN-based security supports compliance by:Using Smart Routing to direct AI workloads to designated inference nodes, helping align processing with data sovereignty laws.Optimizing delivery and security while maintaining adherence to regional compliance requirements.While CDNs enhance security and performance by managing traffic flow, compliance ultimately depends on where the AI model is hosted and processed. Smart Routing allows organizations to define policies that help keep inference within legally approved regions, reducing compliance risks.Best practices:To protect AI inference environments from endpoint-related threats, you should:Deploy monitoring tools to detect unauthorized access, anomalies, and potential security breaches in real-time.Implement logging and auditing mechanisms for compliance reporting and proactive security tracking.Secure AI inference with Gcore Everywhere InferenceAI inference security and compliance are critical as businesses handle sensitive data across multiple regions. Organizations need a robust, security-first AI infrastructure to mitigate risks, reduce latency, and maintain compliance with data sovereignty laws.Gcore’s edge network and CDN-based security provide multi-layered protection for AI workloads, combining DDoS protection and WAAP (web application and API protection. By keeping inference closer to users and securing every stage of the AI pipeline, Gcore helps businesses protect data, optimize performance, and meet industry regulations.Explore Gcore AI Inference

Mobile World Congress 2025: the year of AI

As Mobile World Congress wrapped up for another year, it was apparent that only one topic was on everyone’s minds: artificial intelligence.Major players—such as Google, Ericsson, and Deutsche Telekom—showcased the various ways in which they’re piloting AI applications—from operations to infrastructure management and customer interactions. It’s clear there is a great desire to see AI move from the research lab into the real world, where it can make a real difference to people’s everyday lives. The days of more theoretical projects and gimmicky robots seem to be behind us: this year, it was all about real-world applications.MWC has long been an event for telecommunications companies to launch their latest innovations, and this year was no different. Telco companies demonstrated how AI is now essential in managing network performance, reducing operational downtime, and driving significant cost savings. The industry consensus is that AI is no longer experimental but a critical component of modern telecommunications. While many of the applications showcased were early-stage pilots and stakeholders are still figuring out what wide-scale, real-time AI means in practice, the ambition to innovate and move forward on adoption is clear.Here are three of the most exciting AI developments that caught our eye in Barcelona:Conversational AIChatbots were probably the key telco application showcased across MWC, with applications ranging from contact centers, in-field repairs, personal assistants transcribing calls, booking taxis and making restaurant reservations, to emergency responders using intelligent assistants to manage critical incidents. The easy-to-use, conversational nature of chatbots makes them an attractive means to deploy AI across functions, as it doesn’t require users to have any prior hands-on machine learning expertise.AI for first respondersEmergency responders often rely on telco partners to access novel, technology-enabled solutions to address their challenges. One such example is the collaboration between telcos and large language model (LLM) companies to deliver emergency-response chatbots. These tailored chatbots integrate various decision-making models, enabling them to quickly parse vast data streams and suggest actionable steps for human operators in real time.This collaboration not only speeds up response times during critical situations but also enhances the overall effectiveness of emergency services, ensuring that support reaches those in need faster.Another interesting example in this field was the Deutsche Telekom drone with an integrated LTE base station, which can be deployed in emergencies to deliver temporary coverage to an affected area or extend the service footprint during sports events and festivals, for example.Enhancing Radio Access Networks (RAN)Telecommunication companies are increasingly turning to advanced applications to manage the growing complexity of their networks and provide high-quality, uninterrupted service for their customers.By leveraging artificial intelligence, these applications can proactively monitor network performance, detect anomalies in real time, and automatically implement corrective measures. This not only enhances network reliability but reduces operational costs and minimizes downtime, paving the way for more efficient, agile, and customer-focused network management.One notable example was the Deutsche Telekom and Google Cloud collaboration: RAN Guardian. Built using Gemini 2.0, this agent analyzes network behavior, identifies performance issues, and takes corrective measures to boost reliability, lower operational costs, and improve customer experience.As telecom networks become more complex, conventional rule-based automation struggles to handle real-time challenges. In contrast, agentic AI employs large language models (LLMs) and sophisticated reasoning frameworks to create intelligent systems capable of independent thought, action, and learning.What’s next in the world of AI?The innovation on show at MWC 2025 confirms that AI is rapidly transitioning from a research topic to a fundamental component of telecom and enterprise operations.  Wide-scale AI adoption is, however, a balancing act between cost, benefit, and risk management.Telcos are global by design, operating in multiple regions with varying business needs and local regulations. Ensuring service continuity and a good return on investment from AI-driven applications while carefully navigating regional laws around data privacy and security is no mean feat.If you want to learn more about incorporating AI into your business operations, we can help.Gcore Everywhere Inference significantly simplifies large-scale AI deployments by providing a simple-to-use serverless inference tool that abstracts the complexity of AI hardware and allows users to deploy and manage AI inference globally with just a few clicks. It enables fully automated, auto-scalable deployment of inference workloads across multiple geographic locations, making it easier to handle fluctuating requirements, thus simplifying deployment and maintenance.Learn more about Gcore Everywhere Inference

Everywhere Inference updates: new AI models and enhanced product documentation

This month, we’re rolling out new features and updates to enhance AI model accessibility, performance, and cost-efficiency for Everywhere Inference. From new model options to updated product documentation, here’s what’s new in February.Expanding the model libraryWe’ve added several powerful models to Gcore Everywhere Inference, providing more options for AI inference and fine-tuning. This includes three DeepSeek R1 options, state-of-the-art open-weight models optimized for various NLP tasks.DeepSeek’s recent rise represents a major shift in AI accessibility and enterprise adoption. Learn more about DeepSeek’s rise and what it means for businesses in our dedicated blog. Or, explore what DeepSeek’s popularity means for Europe.The following new models are available now in our model library:QVQ-72B-Preview: A large-scale language model designed for advanced reasoning and language understanding.DeepSeek-R1-Distill-Qwen-14B: A distilled version of DeepSeek R1, providing a balance between efficiency and performance for language processing tasks.DeepSeek-R1-Distill-Qwen-32B: A more robust distilled model designed for enterprise-scale AI applications requiring high accuracy and inference speed.DeepSeek-R1-Distill-Llama-70B: A distilled version of Llama 70B, offering significant improvements in efficiency while maintaining strong performance in complex NLP tasks.Phi-3.5-MoE-instruct: A high-quality, reasoning-focused model supporting multilingual capabilities with a 128K context length.Phi-4: A 14-billion-parameter language model excelling in mathematics and advanced language processing.Mistral-Small-24B-Instruct-2501: A 24-billion-parameter model optimized for low-latency AI tasks, performing competitively with larger models.These additions give developers more flexibility in selecting the right models for their use cases, whether they require large-scale reasoning, multimodal capabilities, or optimized inference efficiency. The Gcore model library offers numerous popular models available at the click of a button, but you can also bring your own custom model just as easily.Everywhere Inference product documentationTo help you get the most out of Gcore Everywhere Inference, we’ve expanded our product documentation. Whether you’re deploying AI models, fine-tuning performance, or scaling inference workloads, our docs provide in-depth guidance, API references, and best practices for seamless AI deployment.Choose Gcore for intuitive, powerful AI deploymentWith these updates, Gcore Everywhere Inference continues to provide the latest and best in AI inference. If you need speed, efficiency, and flexibility, get in touch. We’d love to explore how we can support and enhance your AI workloads.Get a complimentary AI consultation

How to optimize ROI with intelligent AI deployment

As generative AI evolves, the cost of running AI workloads has become a pressing concern. A significant portion of these costs will come from inference—the process of applying trained AI models to real-world data to generate responses, predictions, or decisions. Unlike training, which occurs periodically, inference happens continuously, handling vast amounts of user queries and data in real-time. This persistent demand makes managing inference costs a critical challenge, as inefficiencies can gradually drive up expenses.Cost considerations for AI inferenceOptimizing AI inference isn’t just about improving performance—it’s also about controlling costs. Several factors influence the total expense of running AI models at scale, from the choice of hardware to deployment strategies. As businesses expand their AI capabilities, they must navigate the financial trade-offs between speed, accuracy, and infrastructure efficiency.Several factors contribute to inference costs:Compute costs: AI inference relies heavily on GPUs and specialized hardware. These resources are expensive, and as demand grows, so do the associated costs of maintaining and scaling them.Latency vs. cost trade-off: Real-time applications like recommendation systems or conversational AI require ultra-fast processing. Achieving low latency often demands premium resources, creating a challenging trade-off between performance and cost.Operational overheads: Managing inference at scale can lead to rising expenses, particularly as query volumes increase. While cloud-based inference platforms offer flexibility and scalability, it’s important to implement cost-control measures to avoid unnecessary overhead. Optimizing workload distribution and leveraging adaptive scaling can help mitigate these costs.Balancing performance, cost, and efficiency in AI deploymentThe AI marketplace is teeming with different options and configurations. This can make critical decisions about inference optimization, like model selection, infrastructure, and operational management, feel overwhelming and easy to get wrong. We recommend these key considerations when navigating the choices available:Selecting the right model sizeAI models range from massive foundational models to smaller, task-specific in-house solutions. While large models excel in complex reasoning and general-purpose tasks, smaller models can deliver cost-efficient, accurate results for specific applications. Finding the right balance often involves:Experimenting during the proof-of-concept (POC) phase to test different model sizes and accuracy levels.Prioritizing smaller models where possible without compromising task performance.Matching compute with task requirementsNot every workload requires the same level of computational power. By matching hardware resources to model and task requirements, businesses can significantly reduce costs while maintaining performance.Optimizing infrastructure for cost-effective inferenceInfrastructure plays a pivotal role in determining inference efficiency. Here are three emerging trends:Leveraging edge inference: Moving inference closer to the data source can minimize latency and reduce reliance on more expensive centralized cloud solutions. This approach can optimize costs and improve regulatory compliance for data-sensitive industries.Repatriating compute: Many businesses are moving away from hyperscalers—large cloud providers like AWS, Google Cloud, and Microsoft Azure—to local, in-country cloud providers for simplified compliance and often lower costs. This shift enables tighter cost control and can mitigate the unpredictable expenses often associated with cloud platforms.Dynamic inference management tools: Advanced monitoring tools help track real-time performance and spending, enabling proactive adjustments to optimize ROI.Building a sustainable AI futureGcore’s solutions are designed to help you achieve the ideal balance between cost, performance, and scalability. Here’s how:Smart workload routing: Gcore’s intelligent routing technology ensures workloads are processed at the most suitable edge location. While proximity to the user is prioritized for lower latency and compliance, this approach can also save cost by keeping inference closer to data sources.Per-minute billing and cost tracking: Gcore’s platform offers unparalleled budget control with granular per-minute billing. This transparency allows businesses to monitor and optimize their spending closely.Adaptive scaling: Gcore’s adaptive scaling capabilities allocate just the right amount of compute power needed for each workload, reducing resource waste without compromising performance.How Gcore enhances AI inference efficiencyAs AI adoption grows, optimizing inference efficiency becomes critical for sustainable deployment. Carefully balancing model size, infrastructure, and operational strategies can significantly enhance your ROI.Gcore’s Everywhere Inference solution provides a reliable framework to achieve this balance, delivering cost-effective, high-performance AI deployment at scale.Explore Everywhere Inference

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.