Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
Under attack?

Products

Solutions

Resources

Partners

Why Gcore

  1. Home
  2. Developers
  3. Static vs. Dynamic Content: Understanding the Difference

Static vs. Dynamic Content: Understanding the Difference

  • By Gcore
  • November 1, 2023
  • 9 min read
Static vs. Dynamic Content: Understanding the Difference

Static and dynamic content play specific roles in your website’s performance and user experience, and finding the right balance and approach to them is crucial to enhancing your business’ online presence. This article will provide a comprehensive understanding of static and dynamic content, showcasing their unique benefits and detailing how to optimize both for enhanced speed and personalization.

Defining the Terms: Static vs. Dynamic, Web Pages vs. Content

When browsing a web page, you encounter various elements: text snippets, images, forms, and interactive buttons. These elements together are what we call “content,” and its nature—static or dynamic—influences both user experience and website efficiency. Here’s the difference:

  • Static content: Content remains the same for all users, regardless of their behavior or real-time events.
  • Dynamic content: Content generated or altered in real-time based on user behavior, location, or other factors.

It’s important to highlight the difference between static and dynamic content and static and dynamic web pages: as these terms sound similar, it is often confusing. When we are talking about the web page, the difference is in the underlying logic of the page, rather than individual content elements. Both static and dynamic web pages can hold both kinds of content.

  • Static web pages are those that display the same content to all users, regardless of their location, time of day, or any other factor. They are typically created using HTML, CSS, and JavaScript, and the content is stored in plain text files on the web server. When a user requests a static web page, the web server simply sends the pre-generated HTML file to the user’s browser. This makes static web pages very fast to load, but also means that they are not very interactive, even if they can have dynamic elements in them.
  • Dynamic web pages, on the other hand, can generate different content for different users, based on various factors, such as the user’s location, time of day, or actions taken on the page. Dynamic web pages are typically created using server-side scripting languages, such as PHP or Python, as well as web frameworks like ASP.NET, which makes them more complex to manage. When a user requests a dynamic web page, the web server executes the server-side script and generates a custom HTML page for the user. This process can take longer to load than a static web page, but it allows for more interactivity.

In this article, we’ll discuss static and dynamic content, rather than web pages. Let’s dive deeper into what static and dynamic content are, one at a time.

Static Content

Static content refers to the elements on a webpage that remain constant, regardless of who is accessing the page, when, or from where. The content is generated once and is delivered in the exact same form to every user who accesses it.

Characteristics of Static Content

  • Easy to cache: Because static content remains the same for all users, it’s straightforward to cache. This means a copy can be stored temporarily to serve subsequent users, reducing the need to generate it again.
  • Fast to serve: Static content does not require a lot of computational to be fetched to users. Because it is simple to cache, it’s often immediately available for display.
  • Resource-efficient: Static content does not necessitate complicated database queries or server-side processing to display on a user’s browser. It comes from the server as-is, making it quicker and less resource-intensive.
  • Immutable: Changing static content generally requires manual intervention by a web developer or content manager, who will have to edit or upload new source files, commit the changes, and perhaps even rebuild the site.

Static Content Examples

  • Text blocks: Paragraphs or sentences that are informational and remain unchanged across different user sessions, such as a company’s mission statement, articles, legal disclaimers, and the questions and answers in a FAQ section.
  • Logos and branding: Graphical elements are consistent across all user experiences.
  • Headers and footers: Including navigation links, copyright notices, and contact information.
  • Tables and lists: Data sets that are the same for all users are static content, like a price list.
  • Embedded media: Such as videos or audio clips that are not interactive and remain the same for every user.

How Is Static Content Delivered?

  1. User request: A user enters a URL or clicks on a link (e.g., example.com), initiating an HTTP request to the web server.
  2. Server lookup: Upon receiving the HTTP request, the server searches its storage for the requested content. This storage could be a local disk, a network drive, or a cloud-based storage service.
  3. Content retrieval: The server retrieves the content from storage to fulfill the HTTP request.
  4. Content delivery to the browser: The retrieved content is sent to the user’s browser for rendering and display.

Static content is straightforward to cache: it can be stored either on the server or in the user’s browser for quicker retrieval in future interactions. Cached static content can lead to faster page loading and reduced server load.

Dynamic Content

Imagine you’re shopping online for a new pair of sneakers. As you browse, the website starts showing you shoe options that match your previous searches or even your current weather conditions. That’s dynamic content at play, making your shopping experience highly personalized and interactive.

Dynamic content is any content on a web page that changes based on factors like the user’s location, behavior, settings, and preferences. It is generated on the fly and can differ from one user to the next, or from one visit to the next by the same user.

Characteristics of Dynamic Content

  • Often requires database queries: To fetch real-time or personalized information, dynamic content often necessitates database lookups. Examples include a user’s order history, local weather, or news updates.
  • Personalizes user experience: Dynamic content adapts based on user behavior, location, or preferences. This doesn’t mean the entire webpage will change; instead, certain elements may adjust to offer a more tailored experience.
  • Challenging to cache: Dynamic content is resource-intensive and takes more server time to load than static content, due to the need for real-time generation or fetching. Caching is difficult because the content is updated frequently and often unique to individual users, which diminishes the effectiveness of storing and reusing previously generated data.

Examples of Dynamic Content

  • Personalized messages: A greeting that says “Welcome back, [Username]” changes based on who is logged in.
  • Live stock ticker: A stock ticker updates in real time according to market changes.
  • Interactive forms: Forms that change questions or options based on previous answers (e.g., a dynamic survey).
  • Shopping cart: A shopping cart that updates to show items you’ve selected during your browsing session.
  • Location-related information: Displaying weather, news, or even language translations based on the user’s location.
  • API-driven content: Information displayed through API calls that pull real-time data. For instance, a travel booking site might use an API to fetch and display the most current flight or hotel information based on user query parameters.
  • Text messaging features: In a chat application, each new message sent or received would be a piece of dynamic content that appears in real time, updating the chat history accordingly.

How Is Dynamic Content Delivered?

  1. User request: A user makes a request by entering a URL or interacting with elements on the webpage.
  2. Server routing: The request is initially directed to a web server, which then forwards it to an application server. This application server handles tasks like data queries and dynamic content generation.
  3. Data fetch: The application server fetches the required data from various sources, including databases, external APIs, or cloud storage. This data could involve user-specific information like login details, real-time updates like chat history, or personalized recommendations.
  4. Content generation: The server takes the fetched data and injects it into an HTML template, creating a custom page—or “view”—for the user.
  5. Content delivery: This custom HTML page or page fragment is sent to the user’s browser.

Once received, the browser displays the custom content. This often allows for further interactions, such as form submissions or clicking buttons, which could initiate a new round of dynamic content delivery.

Dynamic Content Optimization Challenges

While dynamic content is not cacheable in the traditional sense due to its real-time updates and user-specific nature, that doesn’t make it exempt from performance optimization. There are several approaches to dynamic content acceleration:

  • Some dynamic content may be resource-intensive to generate. In cases when it is not single-use content, it can be cached for a brief period, significantly reducing the load on your server.
  • Certain dynamic elements may change only rarely, or may follow a predictable pattern. This content can be cached until the next expected update occurs.
  • User-specific data, like a personalized greeting that appears every time the same user visits your site, is another candidate for caching. In this case, the data can be stored in the user’s browser and retrieved for subsequent sessions.
  • Time-sensitive data that updates at fixed intervals, such as stock prices updated every minute, can benefit from short-term caching.

So, while caching dynamic content comes with its own set of complexities, strategic planning allows for both efficient resource use and faster content delivery.

Key Differences Between Static and Dynamic Content

The following table highlights key differences between static and dynamic content.

Static content Dynamic content
Remains consistent unless updated through a new release or edit.ChangeabilityCan change in real time or adapt with each user visit.
None.PersonalizationYes.
Initially created during development, but can be updated through new releases or content management.GenerationCreated on-the-fly, often based on user interaction, preferences, or real-time events.
Easier to cache, enabling faster loading times and reduced server load.DeliveryMore challenging to cache;* some elements can be cached, but others must be generated in real time or on demand. Often requires real-time database queries and is more resource-intensive.
Consistent, but potentially less engaging experience for users due to limited interactivity such as clickable links and basic forms. Example: A static FAQ page or contact formUser experienceMore personalized but could be slower due to real-time data processing, enables more complex interactions. Example: A dashboard with user statistics or real-time stock ticker.
Easier for search engines to index due to its consistent nature.SEO impactMay require additional strategies for optimal SEO. For example, a static page version will be served to search engine crawlers while still providing a dynamic experience for human users.
Easier to manage since content remains constant until manually updated.ComplexityMore complex to manage because of the need for real-time updates, database queries, and server-side logic.
Generally less prone to web attacks such as SQL injection. Still, it’s not immune to all security threats.SecurityCould be more vulnerable to attacks like SQL injection if not properly secured.
Can handle increased user traffic with simpler infrastructure due to caching.ScalabilityCan handle user growth but may require complex infrastructure like load balancers to manage high traffic and real-time queries.

* Caching is possible for dynamic content, but it’s not as straightforward as static content. Some dynamic content, such as API responses, search results, and personalized user settings that don’t change frequently, can be cached for short periods. In contrast, other dynamic content can’t be cached at all.

Coexistence of Static and Dynamic Content

Nowadays, it’s rare to find websites that rely solely on static or dynamic content. Instead, a hybrid approach has become the norm, leveraging the strengths of both static and dynamic elements to deliver an engaging user experience. This hybrid approach allows web developers to optimize user experience and server performance, marrying the speed and reliability of static content with the personalization and interactivity of dynamic content. Examples of when the hybrid approach would be used include:

  • Integrated websites. On e-commerce platforms, dynamic content displays product availability and user reviews, while the “About Us” or “Help” sections are typically static.
  • Video platforms. The video player may be static, ensuring consistent performance across all user interactions, whereas dynamic elements—like tailored suggestions, real-time counts, and comments—update dynamically.
  • Blog platforms. The article, images, and styling could be static, but the comments section underneath is dynamic. As readers comment, this section updates without requiring the rest of the page to reload.
  • Travel booking sites. While the search forms and navigation menus are often static, the available flights, hotels, or vacation packages displayed are dynamic and can change based on real-time availability and price fluctuations.
  • Social media. Your profile picture and basic layout might be static, but the feed of posts is dynamic, changing continuously based on various factors including your interactions and new posts by your network.

Optimizing Content Types for Better Performance

To offer a seamless user experience, it’s crucial to optimize both static and dynamic content. Here’s how to achieve optimal performance for each.

Static ContentDynamic Content
 CDN implementation: A CDN (content delivery network) is a set of interconnected servers that retrieve information from source servers, cache it, and deliver it to the clients using the shortest route. CDN’s main task is speeding up web application performance. While traditionally, CDNs were designed to cache and deliver static content, modern CDNs can distribute both static and dynamic assets across multiple locations. CDNs use intelligent caching and distribution algorithms to determine what can be cached and for how long, thus optimizing content delivery for a broad range of web assets.
 HTTP/3: Utilizing HTTP/3 can make web pages load faster by allowing multiple files to be transferred simultaneously over a single connection.
 Prefetching and preloading: Prefetching can be used to download critical resources that will be used to navigate a subsequent page, thus speeding up future navigations. Preloading, on the other hand, is used to load essential resources for the current page in the background. This allows the resources to be available as soon as needed, improving the speed of the current page’s rendering process.
 Lazy loading: Elements like images or videos can be loaded only when they become visible on the screen, reducing initial page load time.
 Compression: Using techniques like Gzip and Brotli to compress CSS, JavaScript, and even HTML files can reduce file sizes and speed up loading times. Database optimization: Making sure that database queries are well-structured and fetch only the needed data, and that databases are optimized will reduce the time it takes to generate dynamic content and server resource usage.
 Minification: Minifying CSS and JavaScript files removes unnecessary characters without affecting functionality, making the files smaller and quicker to load. Server-side caching: For content that changes less frequently, server-side caching can store the results of database queries temporarily to speed up content generation.
 Cache control: Properly configuring cache control headers can help browsers store static assets locally, improving page load speed on subsequent visits. Content fragment caching: Sections of web pages that are dynamic but do not change often can be cached for short periods, thus improving the speed of page rendering.
 Load balancing: Distributing incoming user requests across multiple servers can prevent any single server from becoming a bottleneck, improving the efficiency of delivering static content. API caching: If dynamic content is fetched via API calls, those calls can be cached to reduce the time it takes to load that content.

Conclusion

In summary, optimizing both static and dynamic content is essential for delivering a fast and personalized user experience. Remember, it’s not an either-or situation; the most effective web platforms leverage both static and dynamic elements in a harmonized approach. By implementing the methods covered in this article and using a modern CDN, you can ensure efficient content distribution, regardless of your user’s location.

If you are looking to provide a fast, secure, and seamless web experience for your users? Consider leveraging the power of Gcore CDN to supercharge your content delivery. With its high-performance capabilities, intelligent caching algorithms, and global distribution, Gcore CDN is the ideal solution for businesses looking to scale and optimize their web assets.

Try Gcore CDN for free

Related Articles

How do CDNs work?

Picture this: A visitor lands on your website excited to watch a video, buy an item, or explore your content. If your page loads too slowly, they may leave before it even loads completely. Every second matters when it comes to customer retention, engagement, and purchasing patterns.This is where a content delivery network (CDN) comes in, operating in the background to help end users access digital content quickly, securely, and without interruption. In this article, we’ll explain how a CDN works to optimize the delivery of websites, applications, media, and other online content, even during high-traffic spikes and cyberattacks. If you’re new to CDNs, you might want to check out our introductory article first.Key components of a CDNA CDN is a network of interconnected servers that work together to optimize content delivery. These servers communicate to guarantee that data reaches users as quickly and efficiently as possible. The core of a CDN consists of globally distributed edge servers, also known as points of presence (PoPs):Origin server: The central server where website data is stored. Content is distributed from the origin to other servers in the CDN to improve availability and performance.Points of presence (PoPs): A globally distributed network of edge servers. PoPs store cached content—pre-saved copies of web pages, images, videos, and other assets. By serving cached content from the nearest PoP to the user, the CDN reduces the distance data needs to travel, improving load times and minimizing strain on the origin server. The more PoPs a network has, the faster content is served globally.How a CDN delivers contentCDNs rely on edge servers to store content in a cache, enabling faster delivery to end users. The delivery process differs depending on whether the content is already cached or needs to be fetched from the origin server.A cache hit occurs when the requested content is already stored on a CDN’s edge server. Here’s the process:User requests content: When a user visits a website, their device sends a request to load the necessary content.Closest edge server responds: The CDN routes the request to the nearest edge server to the user, minimizing travel time.Content delivered: The edge server delivers the cached content directly to the user. This is faster because:The distance between the user and the server is shorter.The edge server has already optimized the content for delivery.What happens during a cache miss?A cache miss occurs when the requested content is not yet stored on the edge server. In this case, the CDN fetches the content from the origin server and then updates its cache:User requests content: The process begins when a user’s device sends a request to load website content.The closest server responds: As usual, the CDN routes the request to the nearest edge server.Request to the origin server: If the content isn’t cached, the CDN fetches it from the origin server, which houses the original website data. The edge server then delivers it to the user.Content cached on edge servers: After retrieving the content, the edge server stores a copy in its cache. This ensures that future requests for the same content can be delivered quickly without returning to the origin server.Do you need a CDN?Behind every fast, reliable website is a series of split-second processes working to optimize content delivery. A CDN caches content closer to users, balances traffic across multiple servers, and intelligently routes requests to deliver smooth performance. This reduces latency, prevents downtime, and strengthens security—all critical for businesses serving global audiences.Whether you’re running an e-commerce platform, a streaming service, or a high-traffic website, a CDN ensures your content is delivered quickly, securely, and without interruption, no matter where your users are or how much demand your site experiences.Take your website’s performance to the next level with Gcore CDN. Powered by a global network of over 180+ points of presence, our CDN enables lightning-fast content delivery, robust security, and unparalleled reliability. Don’t let slow load times or security risks hold you back. Contact our team today to learn how Gcore can elevate your online presence.Discover Gcore CDN

What is a CDN?

Whether you’re running an e-commerce store, streaming videos, or managing an app, delivering content quickly and reliably is essential to keeping users satisfied. This is where a content delivery network (CDN) comes into play. A CDN is a globally distributed network of servers that work together to deliver content to users quickly, minimizing latency. Instead of relying on a single server, a CDN uses edge servers—called points of presence (PoPs)—to cache or temporarily store copies of your content closer to the user. This optimizes website performance, drastically cuts down on load times, and improves the user experience. Research suggests that a one-second lag in page loading speed can significantly decrease engagement, citing a 7% decline in conversions and an 11% decrease in page visits. CDNs considerably speed up load times by reducing latency through content caching closer to the user. By splitting up your website’s traffic over several servers, CDNs also protect it from online threats. Distributed denial-of-service (DDoS) attacks are lessened by CDNs because they spread traffic among a network of servers, improving security and availability. What Challenges Do CDNs Address?CDNs tackle two key challenges to improve website and application performance: Slow load times: Users sometimes experience frustratingly slow-loading websites and applications. This is because data must travel from a server to the end user’s device, causing latency. CDNs move servers closer to end users, reducing the distance that data has to travel and speeding up load times.  High traffic volumes: High traffic volumes during peak times or cyberattacks can overwhelm your website and lead to latency or site unavailability. Since CDNs distribute traffic across multiple servers, no single server is overwhelmed. This helps prevent crashes and delivers smooth performance for all users.Common Use Cases for CDNsCDNs are vital across a range of industries, providing measurable improvements in content delivery and user experience. E-commerce websites use CDNs to guarantee quick page loading and frictionless shopping experiences, even during periods of high traffic. Speed is crucial for online businesses. A study found that the average cost of downtime for e-commerce websites is around $500,000 per hour. This includes lost sales, operational costs, and long-term damage to brand reputation Streaming services rely on CDNs to deliver high-quality video content while minimizing buffering. Netflix states that its CDN contributes to the daily delivery of over 125 million hours of streaming content, guaranteeing a seamless experience for customers worldwide. Gaming companies use CDNs to lower latency and provide a consistent real-time user experience, especially during live multiplayer matches, where it is essential to preserve an engaging and fair gameplay experience. News outlets and blogs benefit from CDNs by ensuring their content loads quickly for readers around the world, during large-scale traffic surges, especially during major events like elections or breaking news.  The Benefits of a CDNFaster Website PerformanceEvery second counts when delivering content online. Slow websites frustrate users and harm your business. CDNs speed up content delivery by caching data closer to users, reducing page and file load times. Whether you’re delivering static content (such as CSS, HTML or JPG files) or dynamic content (like data generated by user interactions or API calls), a CDN ensures optimal performance regardless of user location. While factors like DNS settings, server configurations, and code optimization all play a role, the physical distance between your origin server and your users is a factor that only a CDN can solve. Increased Availability and ReliabilityDowntime can seriously affect online businesses. Hardware failures, traffic surges, and cyberattacks can reduce your website’s availability, harming your customers’ experience and causing financial or reputational damage. In fact, around 98% of organizations report that just one hour of downtime costs over $100,000. A CDN ensures that your website remains available, fast, and reliable by leveraging essential features such as: Load balancing: This process dynamically distributes traffic across multiple servers to optimize performance and prevent overload.Intelligent failover: Automatically redirects traffic if a server goes offline, ensuring continuity with minimal disruption.Anycast routing: Directs users to the closest or most efficient server, further reducing latency and enhancing response times.Security FeaturesAs cyber threats continue to grow in sophistication and frequency, securing your website or application is more critical than ever. According to recent statistics from Cobalt’s 2024 Cybersecurity Report, weekly attacks worldwide increased by 8% in 2023, while attackers used more sophisticated strategies to exploit vulnerabilities. Strong security measures that not only safeguard your website but also guarantee optimal performance are necessary in light of these evolving threats. CDN security features not only improve website performance but also defend against a wide range of attacks by distributing traffic across multiple servers, which mitigates DDoS attacks and filters out malicious traffic before it reaches your website. These features, from DDoS protection to safeguarding APIs, help maintain uptime, protect sensitive data, and guarantee a seamless user experience. Most modern solutions like Gcore CDN integrate robust security measures into content delivery, such as:SSL/TLS encryption facilitates secure data transmission by encrypting traffic, protecting sensitive information from being intercepted.L3/L4 DDoS protection blocks large-scale cyberattacks designed to flood your network and disrupt services.L7 DDoS protection guards your website from more complex attacks targeting how the website functions, helping it continue to operate smoothly.Web application firewall (WAF) acts as a shield, blocking harmful traffic such as hacking attempts or malicious scripts before they can affect your site.API security protects the communication between your application and other software, preventing unauthorized access or data theft.Bot protection identifies harmful automated traffic (bots), preventing activities like data scraping or login attempts with stolen credentials while allowing useful bots (like search engine crawlers) to function normally. Elevate Your Online Experience With a CDNA CDN is no longer a luxury—it’s a necessity for businesses that want to deliver fast, reliable, and secure online experiences. Whether your goal is to optimize performance, manage high traffic, or protect your site from attacks, a well-configured CDN makes all the difference.Ready to enhance your website’s performance? Our futureproof CDN runs on a global network of over 180 points of presence, so your customers get outstanding performance no matter where in the world they’re located. Get in touch with our team today to learn how our CDN can benefit your business.Discover Gcore CDN

How to Migrate Your Video Files to Gcore Video Streaming

Migrating large volumes of video files from different platforms can be daunting and time-consuming, often discouraging companies from moving to a superior provider. But it doesn’t have to be this way. We’ve created this three-step guide to help you efficiently migrate your video files to Gcore from other popular streaming platforms.Step 1: Get Links to Your VideosFirst, obtain links to your videos and download them. Look for your provider in the list below, or refer to the general SFTP/S3 storage section if applicable. After completing the steps for your provider, go straight to step 2.Google DriveShare the file: Open Google Drive and locate the MP4 file you want to download. Right-click on the file and select “Share.”Get the shareable link: In the sharing settings, click “Get link.” Ensure the link-sharing option is turned on.Set sharing permissions: Adjust the sharing permissions so “Anyone with the link” can view or download the file. Copy the generated link.Amazon S3Edit S3 block public access settings: Go to the S3 management console, select the bucket containing your MP4 file, and edit the Block Public Access settings if necessary.Add a bucket policy: Implement a bucket policy that grants public read access to your files.Get the list of objects: Navigate to the Objects tab, find your MP4 file, and click on the file to obtain the Object URL, which will be your download link.VimeoAccess the video: Log in to your Vimeo account and go to the video you wish to download.Select options: Click on the “Settings” button (gear icon) below the video player.Get video file link: In the settings menu, go to the “Video File” tab, where you can find the download link for your MP4 file.MUXEnable master access: Log in to your MUX account, navigate to the video asset, and enable master access if it’s not already enabled.Retrieve URL to master: Once master access is enabled, the URL to the master file will be available in the video asset details. Copy this URL for downloading the file.DropboxCreate a shareable link: Log in to your Dropbox account and locate the MP4 file you want to share. Click on the “Share” button next to the file.Set access permissions: In the sharing settings, create a link and set the permissions to “Anyone with the link.” Copy the generated link to download the file.General SFTP or S3 StorageAccess storage: Log in to your SFTP or S3 storage service control panel.Manage buckets/directories: Navigate to the appropriate bucket or directory containing your MP4 files.Retrieve download links: Generate HTTP/S links for the files you want to download. You can then use these links to download the files directly.Step 2: Check Availability to DownloadEnsure that your video files are available and ready for download, preventing any interruptions or issues during the migration process.Open HTTP/S link in a browser: Copy the HTTP/S link for the MP4 file and paste it into your browser’s address bar. Press Enter to navigate to the link.Check the video plays correctly in the browser: Verify that the video starts playing once the link is opened. This step ensures that the file is accessible and the link is functioning properly.Right-click to download: While the video is playing, right-click on the video player. Select “Save video as…” from the context menu. Choose a destination on your local disk to save the MP4 file.Step 3: Upload to Gcore Video StreamingNo matter which provider you’re migrating from, you need to upload your videos to Gcore Video Streaming storage. There are three primary methods to upload videos to Gcore storage:Copy from external storage: If your videos are available via public HTTPS URLs, you can directly copy the video files from external storage to Gcore. This method efficiently transfers files without downloading them to your local device first.Upload from a local device: Videos can be uploaded from your local host, backend, browser, or mobile app using the TUS resumable upload protocol. This method is resilient to interruptions, ensuring a smooth upload process by resuming from the point of failure.Batch upload: This method will soon be available to migrate extensive collections of videos, allowing you to transfer vast numbers of video files efficiently.The simplest migration option is to obtain video URLs and copy them to Gcore Video Hosting, eliminating the need to download and reupload videos.Example API Request to Copy Video from External StorageTo copy a video from another server, specify the origin_url attribute in the POST API request. The original video will be downloaded for video hosting on our server. Here is an example of the API request to set a task for copying a video from external storage:curl -L 'https://api.gcore.com/streaming/videos/' \-H 'Content-Type: application/json' \-H 'Authorization: APIKey 1234$0d16599c' \-d '{ "video": { "name": "Gcore Demo", "description": "Video copied from an external S3 Storage", "origin_url": "https://s-ed1.cloud.gcore.lu/demo-video/gcore.mp4" } }Refer to the complete documentation for detailed steps and examples of API requests. The original file must be in MP4 format or one of the following formats: 3g2, 3gp, asf, avi, dif, dv, flv, f4v, m4v, mov, mp4, mpeg, mpg, mts, m2t, m2ts, qt, wmv, vob, mkv, ogv, webm, vob, ogg, mxf, quicktime, x-ms-wmv, mpeg-tts, vnd.dlna.mpeg-tts. Streaming formats like HLS (.m3u8/.ts) and DASH (.mpd/.m4v) are intended for final video distribution and cannot be used as original file formats. Here are examples of good and bad links:Good link: https://demo-files.gvideo.io/gcore.mp4Bad link (chunked HLS format): https://demo-files.gvideo.io/hls/master.m3u8Note: Currently, only one video can be uploaded per request, so transferring your library in batches will require automation.Migrate to Gcore Video Streaming TodayGcore Video Streaming makes video migration easy with support for multiple sources and automatic transcoding. Whether you’re moving files from cloud storage, hosting platforms, or API-based services, Gcore streamlines video administration. Store, process, and distribute videos in various formats, complete with features like subtitles and timeline previews.With seamless migration and automatic transcoding, Gcore ensures your videos are optimized and ready for distribution, saving you time and effort. Simplify your video management and ensure your content is always accessible and in the best format for your audience with Gcore’s robust video streaming solutions.

5 Ways to Improve Website Speed for E-Commerce

In part 1 of this guide, we explained why site speed matters for e-commerce and how you can track your current speed.Now, speed up your page load times with these five techniques.#1 Assess Your Current Site SpeedFirst, check your site’s current performance. Use tools like Google PageSpeed Insights or real user monitoring (RUM) tools. PageSpeed Insights evaluates individual web pages for mobile and desktop performance, providing actionable insights to improve speed and user experience.Here’s an example of how your metrics might look:#2 Adopt Code and Image Optimization TechniquesE-commerce websites often have a huge number of images, videos, and/or animations, which can slow down load times. Since these media are essential, the key is to optimize all heavy components.Compress images and use lazy loading via your website host. Minimize redirects and remove broken links, consulting a technical SEO expert if required. These actions can significantly reduce page weight.#3 Adopt CDNs and Edge ComputingThe majority of online shoppers have purchased from an e-commerce store in another country and an additional 22% plan to in the future. Hosting location impacts speed. The further your servers are physically located from your customers, the higher the latency. So, having servers distributed globally improves your load speed and allows you to deliver great customer experiences, no matter where your customers are located.Imagine that your e-commerce website is hosted on a web server in the US, but you have shoppers from the EU. When shoppers from the US browse your store, they may not experience much latency. But shoppers from Germany will, because of the time it takes their browser to send requests to your US server, wait for the server to process them, and deliver a response. A reliable CDN and edge computing provider caching your website content—images, videos, payment portals and all—at the edge makes for speedy content delivery globally.In addition to shortening the distance between your servers and buyers, CDNs also enable load balancing. Say you’re running a Black Friday sale with traffic surges far beyond your normal quantities. Your CDN provider can distribute the traffic evenly between its network of available servers, preventing any one server from being overworked, thereby improving server response times. So, if your Black Friday surge comes mostly from the New York area, a CDN can push some of that traffic from the New York, NY server to the nearby Manassas, VA and Boston, CT servers. Customers won’t notice a difference since both servers are nearby, but spreading the load means all servers continue to perform optimally.#4 Use Fast Authoritative DNSDNS is like the internet’s phone book, translating human-friendly domain names (like www.example.com) into IP addresses that computers use to find each other. When this translation happens quickly, it reduces the time it takes for a user’s browser to locate your website, leading to faster page load times.#5 Rinse and RepeatSite speed optimization is continuous. The internet changes daily; technology advances and competitors emerge. Don’t get comfortable with your site speed. Continuously track speed scores and make improvements.Website Speed Solutions in One Intuitive PlatformWebsite speed is a game-changer for e-commerce success. A website that loads in under a second is the magic number to boost user experience, slash bounce rates, and skyrocket your e-commerce business’ conversion rates.Stay ahead of your e-commerce competitors by choosing tools and platforms designed with your e-commerce website speed in mind. With 180+ PoPs worldwide and a 200+ Tbps network capacity, Gcore CDN and DNS are ideal speed optimization solutions for global e-commerce sites. Contact us today to discover how we can supercharge your site speed.Explore CDN for e-commerce

What Website Speed Is and Why It Matters for E-commerce Success

Website visitors are more impatient than ever—websites that take longer than three seconds to load lose more than half their visitors. For an e-commerce business, that translates to losing half its potential sales, which is bad news for revenue. In this article, we explain what e-commerce website speed is, how it’s measured, and how you can improve it for better customer retention and higher sales.Why Does Site Speed Matter?Website speed measures the time from when visitors click your link to when they see a fully functioning page. With the surge in e-commerce businesses around the world, buyers have many choices and will quickly abandon slow-loading websites out of frustration. Most customers won’t return to a slow website, and 89% will turn to a faster competitor. Satisfied customers are more likely to recommend your website to others, making high user satisfaction an effective marketing strategy.Just a second—or less—of load time can make the difference between a potential customer purchasing from you or your competitor. Conversion rates drop markedly with every additional second of load time. If your site loads in one second or less, you’re looking at a 3% conversion rate. That almost halves when you add just one second of wait time.That’s not surprising, since churn and bounce rates increase with slower load times, meaning potential buyers either leave your site before interacting and/or don’t return.Page load times also affect search engine optimization (SEO) rankings—your spot on search engine results pages. When buyers search for your products, if you don’t appear at the top, your competitors will—and your customers are more likely to visit their site instead of yours.Evidently, optimizing page load time is a non-negotiable for any e-commerce business.Metrics and Indicators to TrackSpeed can be measured and reflected by either technical or business metrics.Technical IndicatorsGoogle Core Web Vitals are metrics that measure various features contributing to a high-quality page experience. They’re an industry-standard way to measure your technical website load speed.Largest contentful paint (LCP) is the time it takes for the largest content on your site to load. An ideal LCP value is below 2.5 seconds, while above 4 seconds signals a poor page experience.First input delay (FID) is the delay between a user’s interaction (e.g., clicking a button) and the browser’s response. Google considers any FID value below 100 ms good, and above 300 ms poor.Cumulative layout shift (CLS) measures how much your content moves around while loading. Poor CLS can cause users to accidentally click on the wrong buttons.Keep track of the following additional technical metrics:Time to first byte (TTFB) is the time between a browser requesting your webpage and the first byte of data arriving. It often triggers the “reduce initial server response time” message in page speed diagnostics.Time to interactive (TTI) measures the time it takes for your website to become fully interactive. Google considers a TTI of below 5 seconds good, and above 7.3 seconds poor.Round-trip time (RTT) is the time it takes for requests to reach the origin server, be processed, and return to the client.Business MetricsThese metrics give you insights into how your website’s speed impacts sales. Although they’re not a direct speed measurement, speed has a direct impact on them.Conversion rate measures the percentage of your website’s visitors who make a purchase.Engagement time measures how much time customers actively spend on your website, such as browsing products or making a purchase. It’s connected to bounce rate, which is the opposite—how many customers leave your site without engaging at all, often caused by slow loading.Search ranking affects your site’s visibility, traffic, and revenue. Fast load times contribute to better SEO rankings.Explore part 2 of this guide to discover 5 practical tips to speed up your e-commerce website performance.

Improve Your Privacy and Data Security with TLS Encryption on CDN

The web is a public infrastructure: Anyone can use it. Encryption is a must to ensure that communications over this public infrastructure are secure and private. You don’t want anyone to read or modify the data you send or receive, like credit card information when paying for an online service.TLS encryption is a basic yet crucial safeguard that ensures only the client (the user’s device, like a laptop) and server can read your request and response data; third parties are locked out. You can run TLS on a CDN for improved performance, caching, and TLS management. If you want to learn more about TLS and how running it on a CDN can improve your infrastructure, this is the right place to start.What Is TLS Encryption and Why Does It Matter?TLS, transport layer security, encrypts data sent via the web to prevent it from being seen or changed while it’s in transit. For that reason, it’s called encryption in-transit technology. TLS is also commonly called HTTPS when used with HTTP or SSL, as previous versions of the technology were based on it. TLS ensures high encryption performance and forward secrecy. To learn more about encryption, check out our dedicated article.TLS is a vital part of the web because it ensures trust for end users and search engines alike. End users can rest assured that their data—like online banking information or photos of their children—can’t be accessed. Search engines know that information protected by TLS is trustworthy, so they rate it higher than non-protected content.What’s the Connection Between TLS and CDN?A CDN, or content delivery network, helps improve your website’s performance by handling the delivery of your content from its own servers rather than your website’s server. When a CDN uses TLS, it ensures that your content is encrypted as it travels from your server to the CDN and from the CDN to your users.With TLS offloading, your server only needs to encrypt the content for each CDN node, not for every individual user. This reduces the workload on your server.Here’s a simple breakdown of how it works:Your server encrypts the content once and sends it to the CDN.The CDN caches this encrypted content.When a user requests the content, the CDN serves it directly to them, handling all encryption and reducing the need to repeatedly contact your server.Without a CDN, your server would have to encrypt and send content to each user individually, which can slow things down. With a CDN, your server encrypts the content once for the CDN. The CDN then takes over, encrypting and serving the content to all users, speeding up the process and reducing the load on your server.Figure 1: Comparison of how content is served with TLS on the web server (left) vs on CDN (right)Benefits of “Offloading” TLS to a CDNOffloading TLS to a CDN can improve your infrastructure with improved performance, better caching, and simplified TLS management.Increased PerformanceWhen establishing a TLS connection, the client and server must exchange information to negotiate a session key. This exchange involves four messages being sent over the network, as shown in Figure 2. The higher the latency between the two participants, the longer it takes to establish the connection. CDN nodes are typically closer to the client, resulting in lower latency and faster connection establishment.As mentioned above, CDN nodes handle all the encryption tasks. This frees up your server’s resources for other tasks and allows you to simplify its code base.Figure 2: TLS handshakeImproved CachingIf your data is encrypted, the CDN can’t cache it. A single file will look different from the CDN nodes for every new TLS connection, eliminating the CDN benefits (Figure 3). If the CDN holds the certificates, it can negotiate encryption with the clients and collect the files from your server in plaintext. This allows the CDN to cache the content efficiently and serve it faster to users.Figure 3: TLS and CDN caching comparedSimplified TLS ManagementThe CDN takes care of maintenance tasks such as certificate issuing, rotation, and auto-renewal. With the CDN managing TLS, your server’s code base can be simplified, and you no longer need to worry about potential TLS updates in the future.TLS Encryption with Gcore CDNWith the Gcore CDN we don’t just take care of your TLS encryption, but also file compression and DNS lookups. This way, you can unburden your servers from non-functional requirements, which leads to smaller, easier-to-maintain code bases, lower CPU, memory, and traffic impact, and a lower workload for the teams managing those servers.Gcore CDN offers two TLS offloading options:Free Let’s Encrypt certificates with automatic validation, an effective and efficient choice for simple security needsPaid custom certificates, ideal if your TLS setup has more complex requirementsHow to Enable HTTPS with a Free Let’s Encrypt CertificateSetting up HTTPS for your website is quick, easy, and free. First, make sure you have a Gcore CDN resource for your website. If you haven’t created one yet, you can do so in the Gcore Customer Portal by clicking Create CDN resource in the top-right of the window (Figure 4) and following the setup wizard. You’ll be asked to update your DNS records so they point to the Gcore CDN, allowing Gcore to issue the certificates later.Figure 4: Create CDN resourceNext, open the resource settings by selecting your CDN resource from the list in the center (Figure 5).Figure 5: Select the CDN resourceEnable HTTPS in the resource settings, as shown in Figure 6:Select SSL in the left navigationClick the Enable HTTPS checkboxClick Get SSL certificateFigure 6: Get an SSL certificateYour certificate will usually be issued within 30 minutes.Our Commitment to Online SecurityAt Gcore, we’re committed to making the internet secure for everyone. As part of this mission, we offer free CDN and free TLS certificates. Take advantage and protect your resources efficiently for free!Get TLS encryption on Gcore CDN free

Subscribe
to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.