Gcore named a Leader in the GigaOm Radar for AI Infrastructure!Get the report
  1. Home
  2. Blog
  3. DDoS attack trends of 2022
Security
Industry trends

DDoS attack trends of 2022

  • July 19, 2022
  • 5 min read
DDoS attack trends of 2022

The political situation in Europe has escalated. This has affected the nature, intensity, and geography of DDoS attacks: They have become actively used for political purposes.

New industry trends due to the conflict in Europe

The situation in Eastern Europe has affected the entire DDoS attacks and protection industry. Now, states are becoming active participants in this market while the attacks themselves are becoming more sophisticated and powerful.

Geopolitical situation changing the objectives, nature, and intensity of attacks

During the first and second quarters of 2022, a number of countries reported attacks on government and financial institutions:

  • “This cyberattack aimed at disabling banks and government websites was the worst in the history of Ukraine. It started on Tuesday, February 15, and lasted until Wednesday, with the goal of causing widespread confusion,” according to the government of Ukraine. “This attack was prepared in advance to destabilize and sow panic and chaos in our country.” The attack targeted the website of the Ministry of Defense and the Ukrainian state services digital portal, Diia, as well as the ATM networks and mobile applications of Oschadbank and PrivatBank.
  • On March 11, the Chinese state agency Xinhua announced that cyberattacks were tracked to the United States, Germany, and the Netherlands. These attacks were carried out via computers in China and targeted Ukrainian, Belarusian, and Russian resources. Despite the state agency naming the sources of detected cyberattacks, it did not attribute them to any particular country. The attacks could be orchestrated by hackers who have acquired IP addresses in these countries.
  • On April 8, the Finnish Ministry of Defense and Foreign Affairs websites were subject to cyberattacks. “We are investigating the matter and will provide information when we know more about the incident,” said the ministry. The suspects behind the attack haven’t been revealed.

States becoming official participants in the DDoS mitigation market

The DDoS market is often called spontaneous. Attacks that are powerful and costly for customers are not uncommon, but governments used to be more restrained when protecting against them. Now, rumors about the actions of state structures in this segment are more often confirmed by the officials. For example, at the end of February 2022, the U.S. Attorney General publicly confirmed that the FBI conducted a secret operation to eliminate Russian malware and prevent a large-scale DDoS attack.

It is also known about the emergence of cyber troops in Ukraine—their creation last year was confirmed by the country’s government. In February 2022, they started the recruitment process. The tasks of the recruits will include ensuring information security and protecting critical infrastructure.

Active government intervention in the industry can fundamentally change the market.

How have the DDoS attack complexity, power, and duration changed?

The power, geography, and duration of DDoS attacks have been affected. According to Andrey Slastenov, Head of Web Security at Gcore, the list of the main DDoS attack victims—countries and industries—has undergone significant changes in recent months. The company shared its data.

Attacks are becoming more complex and multivectored

There are several distinctive types of DDoS attacks:

  • Ransom DDoS attacks are carried out for extortion: The attackers promise to stop their actions upon receiving the ransom.
  • Application-layer DDoS attacks interfere with or even completely paralyze the operation of business applications, which causes material and reputational losses for the targets.
  • Network-layer DDoS attacks sap networks’ bandwidth and disrupt the target’s interactions with partners and clients.

Each type of attack exploits different vulnerabilities in the victim’s infrastructure. Previously, attacks were based on a particular vector, but now the share of more sophisticated malicious campaigns is growing. Rather than directly attacking the victim’s server, attackers paralyze one of its key functions and conduct combined attacks along different vectors.

According to Gcore, the number of such complex multivector attacks tripled in 2022 compared to the previous year. Bots and botnets have become the most common vectors for DDoS attacks, while HTTP flood attacks are also widely used. The company shared an example of a powerful attack that was averted by Gcore Web Application DDoS Protection:

Example of a powerful HTTP Flood attack detected by Gcore Web Application DDoS Protection

The number of ultrashort attacks and average attack power are increasing

In recent years, the number of ultrashort DDoS attacks has been growing. In 2022, according to Gcore, their average duration is 5–10 seconds.

The longest attack was recorded by the company’s specialists on April 14–15. It lasted 24 hours with a capacity of 5 Gbps.

The average power of recorded attacks in Q1–Q2 of 2022 more than doubled: last year, it was 300 Gbps, and this year it is already 700 Gbps. Previously, the main targets of such attacks were small and medium-sized companies, but this year more and more attacks are aimed at government agencies.

Government agencies are becoming frequent targets of DDoS attacks

The beginning of 2022 was marked by some of the most powerful attacks of recent years. Most of them targeted government agencies:

  1. January 15—the attack on the North Korean infrastructure. It led to a complete blackout in the country for 6 hours. As a result of the attack, all transportation in the country was paralyzed.
  2. January 16—the attack on Ukrainian government websites. The websites of the Ministry of Education, Ministry of Foreign Affairs, State Emergency Service, Cabinet of Ministers, Ministry of Energy, and Diia were paralyzed.
  3. February 15—attacks on the Ukrainian Ministry of Defense and Armed Forces, PrivatBank, and Oschadbank. As a result of the simultaneous attacks, many Ukrainian banking systems were down, as well as several government websites.
  4. February 23—the attack on the Ukrainian Ministry of Foreign Affairs and National Parliament. As a result of large-scale attacks, several government websites were down.
  5. March 10—the attack on Ukrtelecom. For 40 minutes, the work of the national telecom operator of Ukraine and the operation of networks and essential communication channels throughout the country was disrupted.
  6. March 14—the attack on Israeli government websites. The websites of the Ministries of Interior, Defense, Health, Justice, and Social Services, as well as the Prime Minister’s Office, were under attack. The campaign was labeled the strongest cyberattack ever launched against Israel.
  7. March 16—the attack on the Ukrainian internet service provider Triolan. Severe internet outages for Ukrainian users of the provider.
  8. March 29—the attack on the Bradley Airport website. Unknown hackers launched an attack on the website of the Bradley International Airport, U.S.A.
  9. April 8—the attack on the Finnish Ministries of Defense and Foreign Affairs. The departments’ websites were unavailable and malfunctioned during the day.

Businesses are undergoing heavy flood attacks

According to Gcore, the most attacked business sectors in Q1–Q2 of 2022 were e-commerce, fintech, and game development. The company shared information about powerful TCP and UDP flood attacks.

Traffic structure of TCP Flood attack on fintech company that lasted more than one day, April 14–15

Information about UDP Flood attack on Game Developer, March 11

Increasing DDoS protection requirements

To defend against powerful and sophisticated attacks, businesses and government agencies require advanced security systems. This is not the first time that Gcore has experienced a sharp increase in the number of DDoS attacks and their complexity.

“In 2020–2021, along with increased content consumption in online games and entertainment industry, DDoS attacks also became more frequent and sophisticated. The attacks became more devious: Instead of targeting specific servers, attackers focused on web applications (L7 of the OSI network model) and tried to legitimize the traffic. One of the main targets of cybercriminals was our client, Wargaming. On February 18, 2021, the security system of Gcore detected a UDP Flood—an attack aimed at the servers of the game development company. Its volume reached 253 Gbps, and it lasted 15 minutes. We deflected it successfully. It was possible thanks to the huge bandwidth of our network and our filtering system, which detects and neutralizes attacks at a speed of hundreds of gigabits per second. Our comprehensive protection algorithms ensure that our security systems are not bypassed, even in cases where attackers try to use traffic similar to legitimate ones.”

Head of Web Security at Gcore, Andrey Slastenov

Gcore offers comprehensive protection against complex attacks: it works at the network (L3), transport (L4), and application (L7) layers, effectively protecting clients from all types of cyberthreats. The solution does not require pausing business processes for the duration of the attack since its intelligent real-time traffic filtering technology only cuts out specific malicious sessions.

More about DDoS Protection

Try Gcore Security

Gcore all-in-one platform: cloud, AI, CDN, security, and other infrastructure services.

Related articles

Gcore successfully stops 6 Tbps DDoS attack

Gcore recently detected and mitigated one of the most powerful distributed denial-of-service (DDoS) attacks of the year, peaking at 6 Tbps and 5.3 billion packets per second (Bpps).This surge, linked to the AISURU botnet, reflects a growing trend of large-scale attacks. It reminds us how crucial effective protection has become for companies that depend on high availability and low latency. 6 Tbps 5.3 BppsThe attack in numbersPeak traffic: 6 TbpsPacket rate: 5.3 BppsMain protocol: UDP, typical of volumetric floods designed to overwhelm bandwidthGeographic concentration: 51% of sources originated in Brazil and 23.7% in the US, together accounting for nearly 75% of all trafficGeographic sources This regional concentration shows how today’s botnets are expanding across areas with high device connectivity and weaker security measures, creating an ideal environment for mass exploitation.How to strengthen your defensesThe 6 Tbps attack is not an isolated incident. It marks an escalation in DDoS activity across industries where performance and availability are critical to customer satisfaction and company revenue. To protect your business from large-scale DDoS attacks, consider the following key strategies:Adopt an adaptive DDoS protection that detects and mitigates attacks automatically.Leverage edge infrastructure to absorb malicious traffic closer to its source.Prepare for high traffic volumes by upgrading your infrastructure or partnering with a reliable DDoS protection provider that has the global capacity and resources to keep your services online during large-scale attacks.Keeping your business safe with GcoreTo stay ahead of these evolving threats, companies need solutions that deliver real-time detection, intelligent mitigation, and global reach. Gcore’s DDoS Protection was built to do precisely that, leveraging AI-driven traffic analysis and worldwide network capacity to block attacks before they impact your users.As attacks grow larger and more complex, staying resilient means being prepared. With the right protection in place, your customers will never know an attack happened in the first place.Learn more about 2025 cyberattack trends

Gcore Radar Q1–Q2 2025: three insights into evolving attack trends

Cyberattacks are becoming more frequent, larger in scale, and more sophisticated in execution. For businesses across industries, this means protecting digital resources is more important than ever. Staying ahead of attackers requires not only robust defense solutions but also a clear understanding of how attack patterns are changing.The latest edition of the Gcore Radar report, covering the first half of 2025, highlights important shifts in attack volumes, industry targets, and attacker strategies. Together, these findings show how the DDoS landscape is evolving, and why adaptive defense has never been more important.Here are three key insights from the report, which you can download in full here.#1. DDoS attack volumes continue to riseIn Q1–Q2 2025, the total number of DDoS attacks grew by 21% compared to H2 2024 and 41% year-on-year.The largest single attack peaked at 2.2 Tbps, surpassing the previous record of 2 Tbps in late 2024.The growth is driven by several factors, including the increasing availability of DDoS-for-hire services, the rise of insecure IoT devices feeding into botnets, and heightened geopolitical and economic tensions worldwide. Together, these factors make attacks not only more common but also harder to mitigate.#2. Technology overtakes gaming as the top targetThe distribution of attacks by industry has shifted significantly. Technology now represents 30% of all attacks, overtaking gaming, which dropped from 34% in H2 2024 to 19% in H1 2025. Financial services remain a prime target, accounting for 21% of attacks.This trend reflects attackers’ growing focus on industries with broader downstream impact. Hosting providers, SaaS platforms, and payment systems are attractive targets because a single disruption can affect entire ecosystems of dependent businesses.#3. Attacks are getting smarter and more complexAttackers are increasingly blending high-volume assaults with application-layer exploits aimed at web apps and APIs. These multi-layered tactics target customer-facing systems such as inventory platforms, payment flows, and authentication processes.At the same time, attack durations are shifting. While maximum duration has shortened from five hours to three, mid-range attacks lasting 10–30 minutes have nearly quadrupled. This suggests attackers are testing new strategies designed to bypass automated defenses and maximize disruption.How Gcore helps businesses stay protectedAs attack methods evolve, businesses need equally advanced protection. Gcore DDoS Protection offers over 200 Tbps filtering capacity across 210+ points of presence worldwide, neutralizing threats in real time. Integrated Web Application and API Protection (WAAP) extends defense beyond network perimeters, protecting against sophisticated application-layer and business-logic attacks. To explore the report’s full findings, download the complete Gcore Radar report here.Download Gcore Radar Q1-Q2 2025

No capacity = no defense: rethinking DDoS resilience at scale

DDoS attacks are growing so massive they are overwhelming the very infrastructure designed to stop them. Earlier this year, a peak attack exceeding 7 Tbps was recorded, while 1–2 Tbps attacks have become everyday occurrences. Such volumes were unimaginable just a few years ago.Yet many businesses still depend on mitigation systems that were not designed to scale alongside this rapid attack growth. While these systems may have smart detection, that advantage is moot if physical infrastructure cannot handle the load. Today, raw capacity is non-negotiable — intelligent filtering alone isn’t enough; you need vast, globally distributed throughput.Lukasz Karwacki, Gcore’s Security Solution Architect specializing in DDoS, explains why modern DDoS protection requires immense capacity, global distribution, and resilient routing. Scroll down to watch him describe why a globally distributed defense model is now the minimum standard for mitigating devastating DDoS attacks.DDoS is a capacity war, not just a traffic spikeThe central challenge in DDoS mitigation today is the total attack volume versus total available throughput.Attacks do not originate from a single location. Global botnets harness compromised devices across Asia, Africa, Europe, and the Americas. When all this traffic converges on a single data center, it creates a structural mismatch: a single site’s limited capacity pitted against the full bandwidth of the internet.Anycast is non-negotiable for global capacityTo counter today’s attack volumes, mitigation capacity must be distributed globally, and that’s where Anycast routing plays a critical role.Anycast routes incoming traffic to the nearest available scrubbing center. If one region is overwhelmed or offline, traffic is automatically redirected elsewhere. This eliminates single points of failure and enables the absorption of massive attacks without compromising service availability.By contrast, static mitigation pipelines create bottlenecks: all traffic funnels through a single point, making it easy for attackers to overwhelm that location. Centralized mitigation means centralized failure. The more distributed your infrastructure, the harder it is to take down — that’s resilient network design.Why always-on cloud defense outperforms on-demand protectionSome DDoS defenses activate only when an attack is detected. These on-demand models may save costs but introduce a brief delay while traffic is rerouted and protections come online.Even a few seconds of delay can allow a high-speed attack to inflict damage.Gcore’s cloud-native DDoS protection is always-on, continuously monitoring, filtering, and balancing traffic across all scrubbing centers. This means no activation lag and no dependency on manual triggers.Capacity is the new baseline for protectionModern DDoS attacks focus less on sophistication and more on sheer scale. Attackers simply overwhelm infrastructure by flooding it with more traffic than it can handle.True DDoS protection begins with capacity planning — not just signatures or rulesets. You need sufficient bandwidth, processing power, and geographic distribution to absorb attacks before they reach your core systems.At Gcore, we’ve built a globally distributed DDoS mitigation network with over 200 Tbps capacity, 40+ protected data centers, and thousands of peering partners. Using Anycast routing and always-on defense, our infrastructure withstands attacks that other systems simply can’t.Many customers turn to Gcore for DDoS protection after other providers fail to keep up with attack capacity.Find out why Fawkes Games turned to Gcore for DDoS protection

Protecting networks at scale with AI security strategies

Network cyberattacks are no longer isolated incidents. They are a constant, relentless assault on network infrastructure, probing for vulnerabilities in routing, session handling, and authentication flows. With AI at their disposal, threat actors can move faster than ever, shifting tactics mid-attack to bypass static defenses.Legacy systems, designed for simpler threats, cannot keep pace. Modern network security demands a new approach, combining real-time visibility, automated response, AI-driven adaptation, and decentralized protection to secure critical infrastructure without sacrificing speed or availability.At Gcore, we believe security must move as fast as your network does. So, in this article, we explore how L3/L4 network security is evolving to meet new network security challenges and how AI strengthens defenses against today’s most advanced threats.Smarter threat detection across complex network layersModern threats blend into legitimate traffic, using encrypted command-and-control, slow drip API abuse, and DNS tunneling to evade detection. Attackers increasingly embed credential stuffing into regular login activity. Without deep flow analysis, these attempts bypass simple rate limits and avoid triggering alerts until major breaches occur.Effective network defense today means inspection at Layer 3 and Layer 4, looking at:Traffic flow metadata (NetFlow, sFlow)SSL/TLS handshake anomaliesDNS request irregularitiesUnexpected session persistence behaviorsGcore Edge Security applies real-time traffic inspection across multiple layers, correlating flows and behaviors across routers, load balancers, proxies, and cloud edges. Even slight anomalies in NetFlow exports or unexpected east-west traffic inside a VPC can trigger early threat alerts.By combining packet metadata analysis, flow telemetry, and historical modeling, Gcore helps organizations detect stealth attacks long before traditional security controls react.Automated response to contain threats at network speedDetection is only half the battle. Once an anomaly is identified, defenders must act within seconds to prevent damage.Real-world example: DNS amplification attackIf a volumetric DNS amplification attack begins saturating a branch office's upstream link, automated systems can:Apply ACL-based rate limits at the nearest edge routerFilter malicious traffic upstream before WAN degradationAlert teams for manual inspection if thresholds escalateSimilarly, if lateral movement is detected inside a cloud deployment, dynamic firewall policies can isolate affected subnets before attackers pivot deeper.Gcore’s network automation frameworks integrate real-time AI decision-making with response workflows, enabling selective throttling, forced reauthentication, or local isolation—without disrupting legitimate users. Automation means threats are contained quickly, minimizing impact without crippling operations.Hardening DDoS mitigation against evolving attack patternsDDoS attacks have moved beyond basic volumetric floods. Today, attackers combine multiple tactics in coordinated strikes. Common attack vectors in modern DDoS include the following:UDP floods targeting bandwidth exhaustionSSL handshake floods overwhelming load balancersHTTP floods simulating legitimate browser sessionsAdaptive multi-vector shifts changing methods mid-attackReal-world case study: ISP under hybrid DDoS attackIn recent years, ISPs and large enterprises have faced hybrid DDoS attacks blending hundreds of gigabits per second of L3/4 UDP flood traffic with targeted SSL handshake floods. Attackers shift vectors dynamically to bypass static defenses and overwhelm infrastructure at multiple layers simultaneously. Static defenses fail in such cases because attackers change vectors every few minutes.Building resilient networks through self-healing capabilitiesEven the best defenses can be breached. When that happens, resilient networks must recover automatically to maintain uptime.If BGP route flapping is detected on a peering session, self-healing networks can:Suppress unstable prefixesReroute traffic through backup transit providersPrevent packet loss and service degradation without manual interventionSimilarly, if a VPN concentrator faces resource exhaustion from targeted attack traffic, automated scaling can:Spin up additional concentratorsRedistribute tunnel sessions dynamicallyMaintain stable access for remote usersGcore’s infrastructure supports self-healing capabilities by combining telemetry analysis, automated failover, and rapid resource scaling across core and edge networks. This resilience prevents localized incidents from escalating into major outages.Securing the edge against decentralized threatsThe network perimeter is now everywhere. Branches, mobile endpoints, IoT devices, and multi-cloud services all represent potential entry points for attackers.Real-world example: IoT malware infection at the branchMalware-infected IoT devices at a branch office can initiate outbound C2 traffic during low-traffic periods. Without local inspection, this activity can go undetected until aggregated telemetry reaches the central SOC, often too late.Modern edge security platforms deploy the following:Real-time traffic inspection at branch and edge routersBehavioral anomaly detection at local points of presenceAutomated enforcement policies blocking malicious flows immediatelyGcore’s edge nodes analyze flows and detect anomalies in near real time, enabling local containment before threats can propagate deeper into cloud or core systems. Decentralized defense shortens attacker dwell time, minimizes potential damage, and offloads pressure from centralized systems.How Gcore is preparing networks for the next generation of threatsThe threat landscape will only grow more complex. Attackers are investing in automation, AI, and adaptive tactics to stay one step ahead. Defending modern networks demands:Full-stack visibility from core to edgeAdaptive defense that adjusts faster than attackersAutomated recovery from disruption or compromiseDecentralized detection and containment at every entry pointGcore Edge Security delivers these capabilities, combining AI-enhanced traffic analysis, real-time mitigation, resilient failover systems, and edge-to-core defense. In a world where minutes of network downtime can cost millions, you can’t afford static defenses. We enable networks to protect critical infrastructure without sacrificing performance, agility, or resilience.Move faster than attackers. Build AI-powered resilience into your network with Gcore.Check out our docs to see how DDoS Protection protects your network

Introducing Gcore for Startups: created for builders, by builders

Building a startup is tough. Every decision about your infrastructure can make or break your speed to market and burn rate. Your time, team, and budget are stretched thin. That’s why you need a partner that helps you scale without compromise.At Gcore, we get it. We’ve been there ourselves, and we’ve helped thousands of engineering teams scale global applications under pressure.That’s why we created the Gcore Startups Program: to give early-stage founders the infrastructure, support, and pricing they actually need to launch and grow.At Gcore, we launched the Startups Program because we’ve been in their shoes. We know what it means to build under pressure, with limited resources, and big ambitions. We wanted to offer early-stage founders more than just short-term credits and fine print; our goal is to give them robust, long-term infrastructure they can rely on.Dmitry Maslennikov, Head of Gcore for StartupsWhat you get when you joinThe program is open to startups across industries, whether you’re building in fintech, AI, gaming, media, or something entirely new.Here’s what founders receive:Startup-friendly pricing on Gcore’s cloud and edge servicesCloud credits to help you get started without riskWhite-labeled dashboards to track usage across your team or customersPersonalized onboarding and migration supportGo-to-market resources to accelerate your launchYou also get direct access to all Gcore products, including Everywhere Inference, GPU Cloud, Managed Kubernetes, Object Storage, CDN, and security services. They’re available globally via our single, intuitive Gcore Customer Portal, and ready for your production workloads.When startups join the program, they get access to powerful cloud and edge infrastructure at startup-friendly pricing, personal migration support, white-labeled dashboards for tracking usage, and go-to-market resources. Everything we provide is tailored to the specific startup’s unique needs and designed to help them scale faster and smarter.Dmitry MaslennikovWhy startups are choosing GcoreWe understand that performance and flexibility are key for startups. From high-throughput AI inference to real-time media delivery, our infrastructure was designed to support demanding, distributed applications at scale.But what sets us apart is how we work with founders. We don’t force startups into rigid plans or abstract SLAs. We build with you 24/7, because we know your hustle isn’t a 9–5.One recent success story: an AI startup that migrated from a major hyperscaler told us they cut their inference costs by over 40%…and got actual human support for the first time. What truly sets us apart is our flexibility: we’re not a faceless hyperscaler. We tailor offers, support, and infrastructure to each startup’s stage and needs.Dmitry MaslennikovWe’re excited to support startups working on AI, machine learning, video, gaming, and real-time apps. Gcore for Startups is delivering serious value to founders in industries where performance, cost efficiency, and responsiveness make or break product experience.Ready to scale smarter?Apply today and get hands-on support from engineers who’ve been in your shoes. If you’re an early-stage startup with a working product and funding (pre-seed to Series A), we’ll review your application quickly and tailor infrastructure that matches your stage, stack, and goals.To get started, head on over to our Gcore for Startups page and book a demo.Discover Gcore for Startups

Outpacing cloud‑native threats: How to secure distributed workloads at scale

The cloud never stops. Neither do the threats.Every shift toward containers, microservices, and hybrid clouds creates new opportunities for innovation…and for attackers. Legacy security, built for static systems, crumbles under the speed, scale, and complexity of modern cloud-native environments.To survive, organizations need a new approach: one that’s dynamic, AI-driven, automated, and rooted in zero trust.In this article, we break down the hidden risks of cloud-native architectures and show how intelligent, automated security can outpace threats, protect distributed workloads, and power secure growth at scale.The challenges of cloud-native environmentsCloud-native architectures are designed for maximum flexibility and speed. Applications run in containers that can scale in seconds. Microservices split large applications into smaller, independent parts. Hybrid and multi-cloud deployments stretch workloads across public clouds, private clouds, and on-premises infrastructure.But this agility comes at a cost. It expands the attack surface dramatically, and traditional perimeter-based security can’t keep up.Containers share host resources, which means if one container is breached, attackers may gain access to others on the same system. Microservices rely heavily on APIs to communicate, and every exposed API is a potential attack vector. Hybrid cloud environments create inconsistent security controls across platforms, making gaps easier for attackers to exploit.Legacy security tools, built for unchanging, centralized environments, lack the real-time visibility, scalability, and automated response needed to secure today’s dynamic systems. Organizations must rethink cloud security from the ground up, prioritizing speed, automation, and continuous monitoring.Solution #1: AI-powered threat detection forsmarter defensesModern threats evolve faster than any manual security process can track. Rule-based defenses simply can’t adapt fast enough.The solution? AI-driven threat detection.Instead of relying on static rules, AI models monitor massive volumes of data in real time, spotting subtle anomalies that signal an attack before real damage is done. For example, an AI-based platform can detect an unauthorized process in a container trying to access confidential data, flag it as suspicious, and isolate the threat within milliseconds before attackers can move laterally or exfiltrate information.This proactive approach learns, adapts, and neutralizes new attack vectors before they become widespread. By continuously monitoring system behavior and automatically responding to abnormal activity, AI closes the gap between detection and action, critical in cloud-native, regulated environments where even milliseconds matter.Solution #2: Zero trust as the new security baseline“Trust but verify” no longer cuts it. In a cloud-native world, the new rule is “trust nothing, verify everything”.Zero-trust security assumes that threats exist both inside and outside the network perimeter. Every request—whether from a user, device, or application—must be authenticated, authorized, and validated.In distributed architectures, zero trust isolates workloads, meaning even if attackers breach one component, they can’t easily pivot across systems. Strict identity and access management controls limit the blast radius, minimizing potential damage.Combined with AI-driven monitoring, zero trust provides deep, continuous verification, blocking insider threats, compromised credentials, and advanced persistent threats before they escalate.Solution #3: Automated security policies for scalingprotectionManual security management is impossible in dynamic environments where thousands of containers and microservices are spun up and down in real time.Automation is the way forward. AI-powered security policies can continuously analyze system behavior, detect deviations, and adjust defenses automatically, without human intervention.This eliminates the lag between detection and response, shrinks the attack window, and drastically reduces the risk of human error. It also ensures consistent security enforcement across all environments: public cloud, private cloud, and on-premises.For example, if a system detects an unusual spike in API calls, an automated security policy can immediately apply rate limiting or restrict access, shutting down the threat without impacting overall performance.Automation doesn’t just respond faster. It maintains resilience and operational continuity even in the face of complex, distributed threats.Unifying security across cloud environmentsSecuring distributed workloads isn’t just about having smarter tools, it’s about making them work together. Different cloud platforms, technologies, and management protocols create fragmentation, opening cracks that attackers can exploit. Security gaps between systems are as dangerous as the threats themselves.Modern cloud-native security demands a unified approach. Organizations need centralized platforms that pull real-time data from every endpoint, regardless of platform or location, and present it through a single management dashboard. This gives IT and security teams full, end-to-end visibility over threats, system health, and compliance posture. It also allows security policies to be deployed, updated, and enforced consistently across every environment, without relying on multiple, siloed tools.Unification strengthens security, simplifies operations, and dramatically reduces overhead, critical for scaling securely at cloud-native speeds. That’s why at Gcore, our integrated suite of products includes security for cloud, network, and AI workloads, all managed in a single, intuitive interface.Why choose Gcore for cloud-native security?Securing cloud-native workloads requires more than legacy firewalls and patchwork solutions. It demands dynamic, intelligent protection that moves as fast as your business does.Gcore Edge Security delivers robust, AI-driven security built for the cloud-native era. By combining real-time AI threat detection, zero-trust enforcement, automated responses, and compliance-first design, Gcore security solutions protect distributed applications without slowing down development cycles.Discover why WAAP is essential for cloud security in 2025

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.