Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
Under attack?

Products

Solutions

Resources

Partners

Why Gcore

  1. Home
  2. Blog
  3. Orchestrating AI: Event-Driven Architectures for Complex AI Workflows

Orchestrating AI: Event-Driven Architectures for Complex AI Workflows

  • By Gcore
  • May 23, 2024
  • 7 min read
Orchestrating AI: Event-Driven Architectures for Complex AI Workflows

This article was originally published on The New Stack. It’s written by Georgina Tryfou, a machine learning engineer at Gcore and an AI expert with more than 15 years of experience in machine learning and speech recognition.


In the current environment of AI frenzy, the implementation of complex AI workflows is becoming increasingly popular among companies that wish to enhance their offerings with AI abilities. In this article, I’ll share a behind-the-scenes look at how we implement event-driven architecture (EDA) in complex AI workflows at Gcore. I’ll walk you through the initial challenges, the architectural decisions made, and the outcomes of employing an EDA in a dynamic, real-world scenario, showing how EDA enhances system responsiveness, scalability, and flexibility for managing AI-driven tasks like subtitle generation for video content.

Why Event-Driven Architecture Matters for AI

Event-driven architecture (EDA) is a design pattern centered around the production, detection, consumption, and reaction to events rather than static, predefined operations. An event is any significant change in a state or an update that occurs within the system. EDA allows different parts of a system to communicate and operate independently, driven by the occurrence of these events, which can be anything from a user action to a completed process.

The adoption of EDA in AI workflow management marks a significant evolution from traditional architectures, such as monolithic, service-oriented, or polling-based architectures. Its principles of asynchronous communication, decoupling, and dynamic scalability align perfectly with the demands of modern AI applications, with three key benefits:

  • The architecture’s modularity makes it easier to scale specific components independently, such as scaling up language processing during high-demand periods in customer service applications without affecting other parts of the system.
  • EDA’s modular design simplifies the process of updating or replacing models with newer versions, as seen in health tech environments where predictive algorithms are frequently refined and deployed to keep pace with medical advancements or newer data.
  • The flexible nature of EDA allows for the seamless integration of various models to realize a complex AI workflow, such as combining image recognition with predictive maintenance in manufacturing, enhancing system robustness and operational efficiency.

These benefits, observed across different sectors, enhance the scalability and responsiveness of AI systems and also their robustness and adaptability, making EDA indispensable for managing complex, multi-model AI workflows across industries and use cases.

Implementing Event-Driven Architecture in AI: A Practical Case Study

At Gcore, we’ve implemented EDA within Gcore Video Streaming AI features. Today, I’ll share with you how we apply EDA for AI subtitle generation for video.

This project began with the goal of improving the efficiency, latency, scalability, and reliability of subtitle generation in multiple languages from raw video content. The process involves several complex steps:

  1. Video decompression: The video file is either decompressed or transcoded into a format suitable for processing.
  2. Speech detection: Segments of the video where speech occurs are identified and distinguished from background noise or silence using specialized ML models.
  3. Speech-to-text conversion (transcription): The detected speech is converted into text. This step requires inference using complex speech recognition models capable of handling a range of languages, accents, and dialects.
  4. Text post-processing: Transcription errors, punctuation, and grammar are corrected. The text is formatted to match the video’s timing; for example, it could be broken into timed subtitles.
  5. Translation (optional): If subtitles are required in multiple languages, the transcribed text may be translated into one or more target languages, again via inference using specialized machine-translation models.
  6. Subtitle synchronization: Subtitle display is timed to match the speech in the video, ensuring that the subtitles appear on screen precisely when the corresponding speech is heard.

Each of these steps requires specialized AI models or algorithms and may require data processing in real- or near-real time, especially in live-streaming scenarios. The result? Serious complexity.

The complexity arises not only from the technical challenges associated with each task, but also from the need to efficiently manage the flow of data between steps, handle errors or exceptions, and scale resources dynamically based on demand.

In our pursuit of orchestrating such sophisticated and demanding AI workflows, we designed an AI system that functions with precision and agility through a well-defined EDA. The architecture of this platform, outlined in the figure below, addresses all stages of AI-driven tasks, facilitates communication between components, and checks that each task can be dynamically scaled and autonomously handled.

Four core components underlie the Gcore Streaming AI platform backend. All these components are versatile and essential to a wide range of AI applications.

Django: API Service

At the front of the architecture lies the API service, which uses the robust Django framework. This is the primary interface for user interactions and processes incoming requests for varied services including transcription and content moderation services like nudity detection. This layer validates and parses incoming requests, triggering a cascade of subsequent tasks in the workflow, as represented on the far left of the diagram above where a user initiates a transcription request to the API service.

Celery: Processing Engine and Task Orchestration

Diving deeper into the backend, we leverage Celery, an asynchronous task queue that acts as a robust background processing engine. Celery is tasked with managing AI processes, such as transcribing audio to text or analyzing content for nudity, and other standalone processes, such as synchronizing transcribed content into subtitles. Celery, in combination with Redis which acts as a message broker, orchestrates these tasks and ensures that each task initiation and completion are driven by the occurrence of predefined events.

Celery’s ability to handle AI workflows is enhanced by a suite of advanced features for orchestrating complex workflows: groups, chains, and chords. These tools allow for the decomposition of high-level, complex AI tasks into granular subtasks, handling of their dependencies, and aggregation of their results.

Redis: Broker and Mediator Pattern

Redis plays a crucial role in our system as the broker and mediator, managing the distribution and coordination of tasks across the backend. It utilizes its fast, in-memory data structure store to handle the task queue efficiently. Within our architecture, task signatures and chains act as the mediators controlling the flow and logic of task execution. This mediation is based on event signals indicating task completion.

Redis’ ability to process these signals quickly is vital for maintaining a dynamic and responsive workflow, as shown in the diagram above: tasks are received by the Redis broker, directed to the appropriate processing containers, and their results are collected post-inference for seamless task transitions and data integrity.

AI Celery Workers: Dedicated AI Task Handling

Each AI Celery worker is dedicated to a specific AI task, deploying and managing AI models such as Whisper for transcription and Pyannote for VAD. These workers operate in isolated environments to make sure that each task is processed in a controlled and secure manner, minimizing the risk of interference between tasks. This setup enhances the scalability of our system by allowing each worker to scale independently based on task demands while simultaneously ensuring high reliability and efficiency in AI model execution.

System Requirements Unveiled: Scaling, Reliability, and Latency

The Gcore backend I just described produces three major benefits that are particularly important for AI workflows: scaling, reliability, and latency reduction.

Scaling

The platform scales to handle varying demand by dynamically allocating cloud resources and leveraging GPU acceleration for intensive ML tasks. This results in seamless scaling, avoiding the performance bottlenecks and high costs typical of traditional systems. By adapting computing power in real time, our system efficiently manages workloads during both peak and off-peak times without compromising performance.

Reliability

AI features within Gcore Video Streaming are designed for high reliability with robust fault tolerance and sophisticated error handling. Strategies like data replication and automatic recovery mechanisms promote system continuity even during failures. In video transcription, if a segment of audio is corrupted, our system can either skip that segment or retry processing it, rather than wasting resources on discarding or retrying the whole audio track.

Latency Reduction

System latency for AI elements is reduced by minimizing idle times and enhancing the transition speed between tasks. We employ three key strategies:

  • Segmenting large tasks into smaller parts for parallel processing across multiple GPUs
  • Optimizing workflows for immediate task transitions
  • Smartly scheduling resources to keep computational assets fully engaged

In video transcription, rather than processing the entire video at once, we break it into segments for concurrent processing. This approach shortens transcription times and helps resources be used efficiently, boosting overall system responsiveness.

Concrete Benefits: Our EDA Success Story

Adopting this system revolutionized the management of complex AI workflows within the Gcore Video Streaming backend. Specifically, the EDA enabled us to reduce analysis time, parallelize AI tasks, scale AI workers independently, and ensure system flexibility.

  • Reduce analysis time: By utilizing EDA, we dramatically decreased the time required to analyze a single video with a set of pre-trained models. This means faster processing of videos for tasks like subtitle generation and content moderation.
  • Parallelize AI tasks: Parallel processing of AI tasks means breaking down complex processes into smaller, manageable tasks that could be executed concurrently. This approach sped up the overall process and optimized the use of computational resources.
  • Scale AI workers independently: Understanding the diverse demands of different AI tasks, our architecture scales AI workers based on the specific requirements of each task. For instance, a single request for subtitle generation might trigger one task for Pyannote (for voice activity detection) and potentially 100 tasks for Whisper (for speech-to-text), with only the latter requiring dynamic scaling due to higher demand.
  • Ensure system flexibility: We aimed to create a highly flexible system capable of quickly adapting to any new AI request. This required the ability to load models in an ad-hoc manner, ensuring our system could immediately respond to and serve new or evolving AI demands without significant reconfiguration.

We Made These Mistakes So You Don’t Have To

Sharing is caring: Here are three things to keep in mind when setting up your own EDA for AI workflows to get the best results right away.

  • Avoid common pitfalls: Design the system with fault tolerance in mind from the outset. Anticipate potential failures in individual components and ensure that the architecture can gracefully handle these incidents without disrupting the overall workflow. Effective error handling and retry mechanisms are essential.
  • Choose the correct topology: Implementing a mediator pattern topology can significantly simplify the implementation of business logic and the modularity and reusability of AI models. Initially employing a broker topology, we encountered limitations in managing complex AI tasks due to its linear communication model. To address these challenges and improve our system’s scalability and modularity, we transitioned to a mediator topology. This change introduced a central mediator to manage AI business logic and orchestrate events, allowing components to operate independently and more efficiently. The shift streamlined the development process and significantly enhanced the system’s adaptability and robustness.
  • Plan for rapid integration: Flexibility is key in any architecture designed for AI workflows. Allow for the quick addition and integration of new models into end services, essential in this fast-evolving field, where the ability to swiftly adopt and deploy new models can provide a significant competitive advantage.

Future Directions in Event-Driven AI Architectures

We’re always looking to the future and innovating our EDA AI systems at Gcore. Two future directions look particularly promising.

Continuous Learning and Adaptation

Incorporating mechanisms for continuous learning and model adaptation requires periodically updating models with new data and, less obviously, dynamically adjusting workflows and processes based on real-time performance metrics and feedback loops. As AI models continue to grow in complexity and capability, developing robust systems for continuous evaluation and deployment becomes critical. This includes automated performance monitoring, version control, and seamless deployment of updated models without disrupting service.

Embracing LLMs and GAI

Our architecture needs to adapt to AI’s changes. While the rise of LLMs and GAI might suggest that traditional AI inference workflows could become obsolete, the reality is that our proposed architecture supports critical areas of AI deployment, such as continuous model learning and evaluation. Our event-driven system’s flexibility makes it well-suited to integrate LLMs for enhanced decision-making processes and to adapt workflows in response to the capabilities of GAI, where AI models will increasingly be replaced by a single, more powerful one.

Conclusion

We’ve found that adopting an EDA for workflow processing offers significant benefits for scalability, reliability, and efficiency in managing complex AI systems in cloud and streaming environments. This approach addresses critical challenges, including dynamic scaling of large ML models, system robustness, and latency reduction. EDA is already proving itself essential for the evolution of scalable and efficient AI systems.

To experience the end product for yourself, check out Gcore Video Streaming and its impressive AI features, including transcription, translation, content moderation, and object recognition.

Try Gcore Video Streaming free for 14 days

Related articles

Qwen3 models available now on Gcore Everywhere Inference

We’ve expanded our model library for Gcore Everywhere Inference with three powerful additions from the Qwen3 series. These new models bring advanced reasoning, faster response times, and even better multilingual support, helping you power everything from chatbots and coding tools to complex R&D workloads.With Gcore Everywhere Inference, you can deploy Qwen3 models in just three clicks. Read on to discover what makes Qwen3 special, which Qwen3 model best suits your needs, and how to deploy it with Gcore today.Introducing the new Qwen3 modelsQwen3 is the latest evolution of the Qwen series, featuring both dense and Mixture-of-Experts (MoE) architectures. It introduces dual-mode reasoning, letting you toggle between “thinking” and “non-thinking” modes to balance depth and speed:Thinking mode (enable_thinking=True): The model adds a <think>…</think> block to reason step-by-step before generating the final response. Ideal for tasks like code generation or math where accuracy and logic matter.Non-thinking mode (enable_thinking=False): Skips the reasoning phase to respond faster. Best for straightforward tasks where speed is a priority.Model sizes and use casesWith three new sizes available, you can choose the level of performance required for your use case:Qwen3-14B: A 14B parameter model tuned for responsive, multilingual chat and instruction-following. Fast, versatile, and ready for real-time applications with lightning-fast responses.Qwen3-30B-A3B: Built on the Arch-3 backbone, this 30B model offers advanced reasoning and coding capabilities. It’s ideal for applications that demand deeper understanding and precision while balancing performance. It provides high-quality output with faster inference and better efficiency.Qwen3-32B: The largest Qwen3 model yet, designed for complex, high-performance tasks across reasoning, generation, and multilingual domains. It sets a new standard for what’s achievable with Gcore Everywhere Inference, delivering exceptional results with maximum reasoning power. Ideal for complex computation and generation tasks where every detail matters.ModelArchitectureTotal parametersActive parametersContext lengthBest suited forQwen3-14BDense14B14B128KMultilingual chatbots, instruction-following tasks, and applications requiring strong reasoning capabilities with moderate resource consumption.Qwen3-30B-A3BMoE30B3B128KScenarios requiring advanced reasoning and coding capabilities with efficient resource usage; suitable for real-time applications due to faster inference times.Qwen3-32BDense32B32B128KHigh-performance tasks demanding maximum reasoning power and accuracy; ideal for complex R&D workloads and precision-critical applications.How to deploy Qwen3 models with Gcore in just a few clicksGetting started with Qwen3 on Gcore Everywhere Inference is fast and frictionless. Simply log in to the Gcore Portal, navigate to the AI Inference section, and select your desired Qwen3 model. From there, deployment takes just three clicks—no setup scripts, no GPU wrangling, no DevOps overhead. Check out our docs to discover how it works.Deploying Qwen3 via the Gcore Customer Portal takes just three clicksPrefer to deploy programmatically? Use the Gcore API with your project credentials. We offer quick-start examples in Python and cURL to get you up and running fast.Why choose Qwen3 + Gcore?Flexible performance: Choose from three models tailored to different workloads and cost-performance needs.Immediate availability: All models are live now and deployable via portal or API.Next-gen architecture: Dense and MoE options give you more control over reasoning, speed, and output quality.Scalable by design: Built for production-grade performance across industries and use cases.With the latest Qwen3 additions, Gcore Everywhere Inference continues to deliver on performance, scalability, and choice. Ready to get started? Get a free account today to explore Qwen3 and deploy with Gcore in just a few clicks.Sign up free to deploy Qwen3 today

Run AI workloads faster with our new cloud region in Southern Europe

Good news for businesses operating in Southern Europe! Our newest cloud region in Sines, Portugal, gives you faster, more local access to the infrastructure you need to run advanced AI, ML, and HPC workloads across the Iberian Peninsula and wider region. Sines-2 marks the first region launched in partnership with Northern Data Group, signaling a new chapter in delivering powerful, workload-optimized infrastructure across Europe.Strategically positioned in Portugal, Sines-2 enhances coverage in Southern Europe, providing a lower-latency option for customers operating in or targeting this region. With the explosive growth of AI, machine learning, and compute-intensive workloads, this new region is designed to meet escalating demand with cutting-edge GPU and storage capabilities.Built for AI, designed to scaleSines-2 brings with it next-generation infrastructure features, purpose-built for today’s most demanding workloads:NVIDIA H100 GPUs: Unlock the full potential of AI/ML training, high-performance computing (HPC), and rendering workloads with access to H100 GPUs.VAST NFS (file sharing protocol) support: Benefit from scalable, high-throughput file storage ideal for data-intensive operations, research, and real-time AI workflows.IaaS portfolio: Deploy Virtual Machines, manage storage, and scale infrastructure with the same consistency and reliability as in our flagship regions.Organizations operating in Portugal, Spain, and nearby regions can now deploy workloads closer to end users, improving application performance. For finance, healthcare, public sector, and other organisations running sensitive workloads that must stay within a country or region, Sines-2 is an easy way to access state-of-the-art GPUs with simplified compliance. Whether you're building AI models, running simulations, or managing rendering pipelines, Sines-2 offers the performance and proximity you need.And best of all, servers are available and ready to deploy today.Run your AI workloads in Portugal todayWith Sines-2 and our partnership with Northern Data Group, we’re making it easier than ever for you to run AI workloads at scale. If you need speed, flexibility, and global reach, we’re ready to power your next AI breakthrough.Unlock the power of Sines-2 today

How AI is transforming gaming experiences

AI is reshaping how games are played, built, and experienced. Although we are in a period of flux where the optimal combination of human and artificial intelligence is still being ironed out, the potential for AI to greatly enhance both gameplay and development is clear.PlayStation CEO Hermen Hulst recently emphasized the importance of striking the right balance between the handcrafted human touch and the revolutionary advances that AI brings. AI will not replace the decades of design, storytelling, and craft laid down by humans—it will build on that foundation to unlock entirely new possibilities. In addition to an enhanced playing experience, AI is shaking up gaming aspects such as real-time analytics, player interactions, content generation, and security.In this article, we explore three specific developments that are enriching gaming storyworlds, as well as the technology that’s bringing them to life and what the future might hold.#1 Responsive NPC behavior and smarter opponentsAI is evolving to create more realistic, adaptive, and intelligent non-player characters (NPCs) that can react to individual player choices with greater depth and reasoning. The algorithms allow NPCs to respond dynamically to players’ decisions so they can adjust their strategies and behaviors in real time. This provides a more immersive and dynamic gameplay environment and means gamers have endless opportunities to experience new gaming adventures and write their own story every time.A recent example is Red Dead Redemption 2, which enables players to interact with NPCs in the Wild West. Players were impressed by its complexity and the ability to interact with fellow cowboys and bar patrons. Although this is limited for now, eventually, it could become like a video game version of the TV series Westworld, in which visitors pay to interact with incredibly lifelike robots in a Wild West theme park.AI also gives in-game opponents more “agency,” making them more reactive and challenging for players to defeat. This means smarter, more unpredictable enemies who provide a heightened level of achievement, novelty, and excitement for players.For example, AI Limit, released in early 2025, is an action RPG incorporating AI-driven combat mechanics. While drawing comparisons to Soulslike games, the developers emphasize its unique features, including the Sync Rate system, which adds depth to combat interactions.#2 AI-assisted matchmaking and player behavior predictionsAI-powered analytics can identify and predict player skill levels and playing styles, leading to more balanced and competitive matchmaking. A notable example is the implementation of advanced matchmaking systems in competitive games such as Apex Legends and Call of Duty: Modern Warfare III. These titles use AI algorithms to analyze not just skill levels but also playstyle preferences, weapon selections, and playing patterns to create matches optimized for player retention and satisfaction. The systems continuously learn from match outcomes to predict player behavior and create more balanced team compositions across different skill levels.By analyzing a player’s past performance, AI can also create smarter team formations. This makes for fairer and more rewarding multiplayer games, as players are matched with others who complement their skill and strategy.AI can monitor in-game interactions to detect and mitigate toxic behavior. This helps encourage positive social dynamics and foster a more collaborative and friendly online environment.#3 Personalized gaming experiencesMultiplayer games can use AI to analyze player behavior in real time, adjusting difficulty levels and suggesting tailored missions, providing rich experiences unique to each player. This creates personalized, player-centric gameplay that evolves dynamically and can change over time as a player’s knowledge and ability improve.Games like Minecraft and Skyrim already use AI to adjust difficulty and offer dynamic content, while Oasis represents a breakthrough as an AI-generated Minecraft-inspired world. The game uses generative AI to predict and render gameplay frames in real time, creating a uniquely responsive environment.Beyond world generation, modern games are also incorporating AI chatbots that give players real-time coaching and personalized skill development tips.How will AI continue to shape gaming?In the future, AI will continue to impact not just the player experience but also the creation of games. We anticipate AI revolutionizing game development in the following areas:Procedural content generation: AI will create vast, dynamic worlds or generate storylines, allowing for more expansive and diverse game worlds than are currently available.Game testing: AI will simulate millions of player interactions to help developers find bugs and improve gameplay.Art and sound design: AI tools will be used to a greater extent than at present to create game art, music, and voiceovers.How Gcore technology is powering AI gaming innovationIn terms of the technology behind the scenes, Gcore Everywhere Inference brings AI models closer to players by deploying them at the edge, significantly reducing latency for training and inference. This powers dynamic features like adaptive NPC behavior, personalized gameplay, and predictive matchmaking without sacrificing performance.Gcore technology differentiates itself with the following features:Supports all major frameworks, including PyTorch, TensorFlow, ONNX, and Hugging Face Transformers, making deploying your preferred model architecture easy.Offers multiple deployment modes, whether in the cloud, on-premise, or across our distributed edge network with 180+ global locations, allowing you to place inference wherever it delivers the best performance for your users.Delivers sub-50ms latency for inference workloads in most regions, even during peak gaming hours, thanks to our ultra-low-latency CDN and proximity to players.Scales horizontally, so studios can support millions of concurrent inferences for dynamic NPC behavior, matchmaking decisions, or in-game voice/chat moderation, without compromising gameplay speed.Keeps your models and training data private through confidential computing and data sovereignty controls, helping you meet compliance requirements across regions including Europe, LATAM, and MENA.With a low-latency infrastructure that supports popular AI frameworks, Gcore Everywhere Inference allows your studio to deploy custom models and deliver more immersive, responsive player experiences at scale. With our confidential computing solutions, you retain full control over your training assets—no data is shared, exposed, or compromised.Deliver next-gen gaming with Gcore AIAI continues to revolutionize industries, and gaming is no exception. The deployment of artificial intelligence can help make games even more exciting for players, as well as enabling developers to work smarter when creating new games.At Gcore, AI is our core and gaming is our foundation. AI is seamlessly integrated into all our solutions with one goal in mind: to help grow your business. As AI continues to evolve rapidly, we're committed to staying at the cutting edge and changing with the future. Contact us today to discover how Everywhere Inference can enhance your gaming offerings.Get a customized consultation about AI gaming deployment

How gaming studios can use technology to safeguard players

Online gaming can be an enjoyable and rewarding pastime, providing a sense of community and even improving cognitive skills. During the pandemic, for example, online gaming was proven to boost many players’ mental health and provided a vital social outlet at a time of great isolation. However, despite the overall benefits of gaming, there are two factors that can seriously spoil the gaming experience for players: toxic behavior and cyber attacks.Both toxic behavior and cyberattacks can lead to players abandoning games in order to protect themselves. While it’s impossible to eradicate harmful behaviors completely, robust technology can swiftly detect and ban bullies as well as defend against targeted cyberattacks that can ruin the gaming experience.This article explores how gaming studios can leverage technology to detect toxic behavior, defend against cyber threats, and deliver a safer, more engaging experience for players.Moderating toxic behavior with AI-driven technologyToxic behavior—including harassment, abusive messages, and cheating—has long been a problem in the world of gaming. Toxic behavior not only affects players emotionally but can also damage a studio’s reputation, drive churn, and generate negative reviews.The online disinhibition effect leads some players to behave in ways they may not in real life. But even when it takes place in a virtual world, this negative behavior has real long-term detrimental effects on its targets.While you can’t control how players behave, you can control how quickly you respond.Gaming studios can implement technology that makes dealing with toxic incidents easier and makes gaming a safer environment for everyone. While in the past it may have taken days to verify a complaint about a player’s behavior, today, with AI-driven security and content moderation, toxic behavior can be detected in real time, and automated bans can be enforced. The tool can detect inappropriate images and content and includes speech recognition to detect derogatory or hateful language.In gaming, AI content moderation analyzes player interactions in real time to detect toxic behavior, harmful content, and policy violations. Machine learning models assess chat, voice, and in-game media against predefined rules, flagging or blocking inappropriate content. For example, let’s say a player is struggling with in-game harassment and cheating. With AI-powered moderation tools, chat logs and gameplay behavior are analyzed in real time, identifying toxic players for automated bans. This results in healthier in-game communities, improved player retention, and a more pleasant user experience.Stopping cybercriminals from ruining the gaming experienceAnother factor negatively impacting the gaming experience on a larger scale is cyberattacks. Our recent Radar Report showed that the gaming industry experienced the highest number of DDoS attacks in the last quarter of 2024. The sector is also vulnerable to bot abuse, API attacks, data theft, and account hijacking.Prolonged downtime damages a studio’s reputation—something hackers know all too well. As a result, gaming platforms are prime targets for ransomware, extortion, and data breaches. Cybercriminals target both servers and individual players’ personal information. This naturally leads to a drop in player engagement and widespread frustration.Luckily, security solutions can be put in place to protect gamers from this kind of intrusion:DDoS protection shields game servers from volumetric and targeted attacks, guaranteeing uptime even during high-profile launches. In the event of an attack, malicious traffic is mitigated in real-time, preventing zero downtime and guaranteeing seamless player experiences.WAAP secures game APIs and web services from bot abuse, credential stuffing, and data breaches. It protects against in-game fraud, exploits, and API vulnerabilities.Edge security solutions reduce latency, protecting players without affecting game performance. The Gcore security stack helps ensure fair play, protecting revenue and player retention.Take the first steps to protecting your customersGaming should be a positive and fun experience, not fraught with harassment, bullying, and the threat of cybercrime. Harmful and disruptive behaviors can make it feel unsafe for everyone to play as they wish. That’s why gaming studios should consider how to implement the right technology to help players feel protected.Gcore was founded in 2014 with a focus on the gaming industry. Over the years, we have thwarted many large DDoS attacks and continue to offer robust protection for companies such as Nitrado, Saber, and Wargaming. Our gaming specialization has also led us to develop game-specific countermeasures. If you’d like to learn more about how our cybersecurity solutions for gaming can help you, get in touch.Speak to our gaming solutions experts today

Gcore and Northern Data Group partner to transform global AI deployment

Gcore and Northern Data Group have joined forces to launch a new chapter in enterprise AI. By combining high-performance infrastructure with intelligent software, the commercial and technology partnership will make it dramatically easier to deploy AI applications at scale—wherever your users are. At the heart of this exciting new partnership is a shared vision: global, low-latency, secure AI infrastructure that’s simple to use and ready for production.Introducing the Intelligence Delivery NetworkAI adoption is accelerating, but infrastructure remains a major bottleneck. Many enterprises discover blockers regarding latency, compliance, and scale, especially when deploying models in multiple regions. The traditional cloud approach often introduces complexity and overhead just when speed and simplicity matter most.That’s where the Intelligence Delivery Network (IDN) comes in.The IDN is a globally distributed AI network built to simplify inference at the edge. It combines Northern Data’s state-of-the-art infrastructure with Gcore Everywhere Inference to deliver scalable, high-performance AI across 180 global points of presence.By locating AI workloads closer to end users, the IDN reduces latency and improves responsiveness—without compromising on security or compliance. Its geo-zoned, geo-balanced architecture ensures resilience and data locality while minimizing deployment complexity.A full AI deployment toolkitThe IDN is a full AI deployment toolkit built on Gcore’s cloud-native platform. The solution offers a vertically integrated stack designed for speed, flexibility, and scale. Key components include the following:Managed Kubernetes for orchestrationA container-based deployment engine (Docker)An extensive model library, supporting open-source and custom modelsEverywhere Inference, Gcore’s software for distributing inferencing across global edge points of presenceThis toolset enables fast, simple deployments of AI workloads—with built-in scaling, resource management, and observability. The partnership also unlocks access to one of the world’s largest liquid-cooled GPU clusters, giving AI teams the horsepower they need for demanding workloads.Whether you’re building a new AI-powered product or scaling an existing model, the IDN provides a clear path from development to production.Built for scale and performanceThe joint solution is built with the needs of enterprise customers in mind. It supports multi-tenant deployments, integrates with existing cloud-native tools, and prioritizes performance without sacrificing control. Customers gain the flexibility to deploy wherever and however they need, with enterprise-grade security and compliance baked in.Andre Reitenbach, CEO of Gcore, comments, “This collaboration supports Gcore’s mission to connect the world to AI anywhere and anytime. Together, we’re enabling the next generation of AI applications with low latency and massive scale.”“We are combining Northern Data’s heritage of HPC and Data Center infrastructure expertise, with Gcore’s specialization in software innovation and engineering.” says Aroosh Thillainathan, Founder and CEO of Northern Data Group. “This allows us to accelerate our vision of delivering software-enabled AI infrastructure across a globally distributed compute network. This is a key moment in time where the use of AI solutions is evolving, and we believe that this partnership will form a key part of it.”Deploy AI smarter and faster with Gcore and Northern Data GroupAI is the new foundation of digital business. Deploying it globally shouldn’t require a team of infrastructure engineers. With Gcore and Northern Data Group, enterprise teams get the tools and support they need to run AI at the edge at scale and at speed.No matter what you and your teams are trying to achieve with AI, the new Intelligence Delivery Network is built to help you deploy smarter and faster.Read the full press release

How to achieve compliance and security in AI inference

AI inference applications today handle an immense volume of confidential information, so prioritizing data privacy is paramount. Industries such as finance, healthcare, and government rely on AI to process sensitive data—detecting fraudulent transactions, analyzing patient records, and identifying cybersecurity threats in real time. While AI inference enhances efficiency, decision-making, and automation, neglecting security and compliance can lead to severe financial penalties, regulatory violations, and data breaches. Industries handling sensitive information—such as finance, healthcare, and government—must carefully manage AI deployments to avoid costly fines, legal action, and reputational damage.Without robust security measures, AI inference environments present a unique security challenge as they process real-time data and interact directly with users. This article explores the security challenges enterprises face and best practices for guaranteeing compliance and protecting AI inference workloads.Key inference security and compliance challengesAs businesses scale AI-powered applications, they will likely encounter challenges in meeting regulatory requirements, preventing unauthorized access, and making sure that AI models (whether proprietary or open source) produce reliable and unaltered outputs.Data privacy and sovereigntyRegulations such as GDPR (Europe), CCPA (California), HIPAA (United States, healthcare), and PCI DSS (finance) impose strict rules on data handling, dictating where and how AI models can be deployed. Businesses using public cloud-based AI models must verify that data is processed and stored in appropriate locations to avoid compliance violations.Additionally, compliance constraints restrict certain AI models in specific regions. Companies must carefully evaluate whether their chosen models align with regulatory requirements in their operational areas.Best practices:To maintain compliance and avoid legal risks:Deploy AI models in regionally restricted environments to keep sensitive data within legally approved jurisdictions.Use Smart Routing with edge inference to process data closer to its source, reducing cross-border security risks.Model security risksBad actors can manipulate AI models to produce incorrect outputs, compromising their reliability and integrity. This is known as adversarial manipulation, where small, intentional alterations to input data can deceive AI models. For example, researchers have demonstrated that minor changes to medical images can trick AI diagnostic models into misclassifying benign tumors as malignant. In a security context, attackers could exploit these vulnerabilities to bypass fraud detection in finance or manipulate AI-driven cybersecurity systems, leading to unauthorized transactions or undetected threats.To prevent such threats, businesses must implement strong authentication, encryption strategies, and access control policies for AI models.Best practices:To prevent adversarial attacks and maintain model integrity:Enforce strong authentication and authorization controls to limit access to AI models.Encrypt model inputs and outputs to prevent data interception and tampering.Endpoint protection for AI deploymentsThe security of AI inference does not stop at the model level. It also depends on where and how models are deployed.For private deployments, securing AI endpoints is crucial to prevent unauthorized access.For public cloud inference, leveraging CDN-based security can help protect workloads against cyber threats.Processing data within the country of origin can further reduce compliance risks while improving latency and security.AI models rely on low-latency, high-performance processing, but securing these workloads against cyber threats is as critical as optimizing performance. CDN-based security strengthens AI inference protection in the following ways:Encrypts model interactions with SSL/TLS to safeguard data transmissions.Implements rate limiting to prevent excessive API requests and automated attacks.Enhances authentication controls to restrict access to authorized users and applications.Blocks bot-driven threats that attempt to exploit AI vulnerabilities.Additionally, CDN-based security supports compliance by:Using Smart Routing to direct AI workloads to designated inference nodes, helping align processing with data sovereignty laws.Optimizing delivery and security while maintaining adherence to regional compliance requirements.While CDNs enhance security and performance by managing traffic flow, compliance ultimately depends on where the AI model is hosted and processed. Smart Routing allows organizations to define policies that help keep inference within legally approved regions, reducing compliance risks.Best practices:To protect AI inference environments from endpoint-related threats, you should:Deploy monitoring tools to detect unauthorized access, anomalies, and potential security breaches in real-time.Implement logging and auditing mechanisms for compliance reporting and proactive security tracking.Secure AI inference with Gcore Everywhere InferenceAI inference security and compliance are critical as businesses handle sensitive data across multiple regions. Organizations need a robust, security-first AI infrastructure to mitigate risks, reduce latency, and maintain compliance with data sovereignty laws.Gcore’s edge network and CDN-based security provide multi-layered protection for AI workloads, combining DDoS protection and WAAP (web application and API protection. By keeping inference closer to users and securing every stage of the AI pipeline, Gcore helps businesses protect data, optimize performance, and meet industry regulations.Explore Gcore AI Inference

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.