Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
Under attack?

Products

Solutions

Resources

Partners

Why Gcore

  1. Home
  2. Blog
  3. Orchestrating AI: Event-Driven Architectures for Complex AI Workflows

Orchestrating AI: Event-Driven Architectures for Complex AI Workflows

  • By Gcore
  • May 23, 2024
  • 7 min read
Orchestrating AI: Event-Driven Architectures for Complex AI Workflows

This article was originally published on The New Stack. It’s written by Georgina Tryfou, a machine learning engineer at Gcore and an AI expert with more than 15 years of experience in machine learning and speech recognition.


In the current environment of AI frenzy, the implementation of complex AI workflows is becoming increasingly popular among companies that wish to enhance their offerings with AI abilities. In this article, I’ll share a behind-the-scenes look at how we implement event-driven architecture (EDA) in complex AI workflows at Gcore. I’ll walk you through the initial challenges, the architectural decisions made, and the outcomes of employing an EDA in a dynamic, real-world scenario, showing how EDA enhances system responsiveness, scalability, and flexibility for managing AI-driven tasks like subtitle generation for video content.

Why Event-Driven Architecture Matters for AI

Event-driven architecture (EDA) is a design pattern centered around the production, detection, consumption, and reaction to events rather than static, predefined operations. An event is any significant change in a state or an update that occurs within the system. EDA allows different parts of a system to communicate and operate independently, driven by the occurrence of these events, which can be anything from a user action to a completed process.

The adoption of EDA in AI workflow management marks a significant evolution from traditional architectures, such as monolithic, service-oriented, or polling-based architectures. Its principles of asynchronous communication, decoupling, and dynamic scalability align perfectly with the demands of modern AI applications, with three key benefits:

  • The architecture’s modularity makes it easier to scale specific components independently, such as scaling up language processing during high-demand periods in customer service applications without affecting other parts of the system.
  • EDA’s modular design simplifies the process of updating or replacing models with newer versions, as seen in health tech environments where predictive algorithms are frequently refined and deployed to keep pace with medical advancements or newer data.
  • The flexible nature of EDA allows for the seamless integration of various models to realize a complex AI workflow, such as combining image recognition with predictive maintenance in manufacturing, enhancing system robustness and operational efficiency.

These benefits, observed across different sectors, enhance the scalability and responsiveness of AI systems and also their robustness and adaptability, making EDA indispensable for managing complex, multi-model AI workflows across industries and use cases.

Implementing Event-Driven Architecture in AI: A Practical Case Study

At Gcore, we’ve implemented EDA within Gcore Video Streaming AI features. Today, I’ll share with you how we apply EDA for AI subtitle generation for video.

This project began with the goal of improving the efficiency, latency, scalability, and reliability of subtitle generation in multiple languages from raw video content. The process involves several complex steps:

  1. Video decompression: The video file is either decompressed or transcoded into a format suitable for processing.
  2. Speech detection: Segments of the video where speech occurs are identified and distinguished from background noise or silence using specialized ML models.
  3. Speech-to-text conversion (transcription): The detected speech is converted into text. This step requires inference using complex speech recognition models capable of handling a range of languages, accents, and dialects.
  4. Text post-processing: Transcription errors, punctuation, and grammar are corrected. The text is formatted to match the video’s timing; for example, it could be broken into timed subtitles.
  5. Translation (optional): If subtitles are required in multiple languages, the transcribed text may be translated into one or more target languages, again via inference using specialized machine-translation models.
  6. Subtitle synchronization: Subtitle display is timed to match the speech in the video, ensuring that the subtitles appear on screen precisely when the corresponding speech is heard.

Each of these steps requires specialized AI models or algorithms and may require data processing in real- or near-real time, especially in live-streaming scenarios. The result? Serious complexity.

The complexity arises not only from the technical challenges associated with each task, but also from the need to efficiently manage the flow of data between steps, handle errors or exceptions, and scale resources dynamically based on demand.

In our pursuit of orchestrating such sophisticated and demanding AI workflows, we designed an AI system that functions with precision and agility through a well-defined EDA. The architecture of this platform, outlined in the figure below, addresses all stages of AI-driven tasks, facilitates communication between components, and checks that each task can be dynamically scaled and autonomously handled.

Four core components underlie the Gcore Streaming AI platform backend. All these components are versatile and essential to a wide range of AI applications.

Django: API Service

At the front of the architecture lies the API service, which uses the robust Django framework. This is the primary interface for user interactions and processes incoming requests for varied services including transcription and content moderation services like nudity detection. This layer validates and parses incoming requests, triggering a cascade of subsequent tasks in the workflow, as represented on the far left of the diagram above where a user initiates a transcription request to the API service.

Celery: Processing Engine and Task Orchestration

Diving deeper into the backend, we leverage Celery, an asynchronous task queue that acts as a robust background processing engine. Celery is tasked with managing AI processes, such as transcribing audio to text or analyzing content for nudity, and other standalone processes, such as synchronizing transcribed content into subtitles. Celery, in combination with Redis which acts as a message broker, orchestrates these tasks and ensures that each task initiation and completion are driven by the occurrence of predefined events.

Celery’s ability to handle AI workflows is enhanced by a suite of advanced features for orchestrating complex workflows: groups, chains, and chords. These tools allow for the decomposition of high-level, complex AI tasks into granular subtasks, handling of their dependencies, and aggregation of their results.

Redis: Broker and Mediator Pattern

Redis plays a crucial role in our system as the broker and mediator, managing the distribution and coordination of tasks across the backend. It utilizes its fast, in-memory data structure store to handle the task queue efficiently. Within our architecture, task signatures and chains act as the mediators controlling the flow and logic of task execution. This mediation is based on event signals indicating task completion.

Redis’ ability to process these signals quickly is vital for maintaining a dynamic and responsive workflow, as shown in the diagram above: tasks are received by the Redis broker, directed to the appropriate processing containers, and their results are collected post-inference for seamless task transitions and data integrity.

AI Celery Workers: Dedicated AI Task Handling

Each AI Celery worker is dedicated to a specific AI task, deploying and managing AI models such as Whisper for transcription and Pyannote for VAD. These workers operate in isolated environments to make sure that each task is processed in a controlled and secure manner, minimizing the risk of interference between tasks. This setup enhances the scalability of our system by allowing each worker to scale independently based on task demands while simultaneously ensuring high reliability and efficiency in AI model execution.

System Requirements Unveiled: Scaling, Reliability, and Latency

The Gcore backend I just described produces three major benefits that are particularly important for AI workflows: scaling, reliability, and latency reduction.

Scaling

The platform scales to handle varying demand by dynamically allocating cloud resources and leveraging GPU acceleration for intensive ML tasks. This results in seamless scaling, avoiding the performance bottlenecks and high costs typical of traditional systems. By adapting computing power in real time, our system efficiently manages workloads during both peak and off-peak times without compromising performance.

Reliability

AI features within Gcore Video Streaming are designed for high reliability with robust fault tolerance and sophisticated error handling. Strategies like data replication and automatic recovery mechanisms promote system continuity even during failures. In video transcription, if a segment of audio is corrupted, our system can either skip that segment or retry processing it, rather than wasting resources on discarding or retrying the whole audio track.

Latency Reduction

System latency for AI elements is reduced by minimizing idle times and enhancing the transition speed between tasks. We employ three key strategies:

  • Segmenting large tasks into smaller parts for parallel processing across multiple GPUs
  • Optimizing workflows for immediate task transitions
  • Smartly scheduling resources to keep computational assets fully engaged

In video transcription, rather than processing the entire video at once, we break it into segments for concurrent processing. This approach shortens transcription times and helps resources be used efficiently, boosting overall system responsiveness.

Concrete Benefits: Our EDA Success Story

Adopting this system revolutionized the management of complex AI workflows within the Gcore Video Streaming backend. Specifically, the EDA enabled us to reduce analysis time, parallelize AI tasks, scale AI workers independently, and ensure system flexibility.

  • Reduce analysis time: By utilizing EDA, we dramatically decreased the time required to analyze a single video with a set of pre-trained models. This means faster processing of videos for tasks like subtitle generation and content moderation.
  • Parallelize AI tasks: Parallel processing of AI tasks means breaking down complex processes into smaller, manageable tasks that could be executed concurrently. This approach sped up the overall process and optimized the use of computational resources.
  • Scale AI workers independently: Understanding the diverse demands of different AI tasks, our architecture scales AI workers based on the specific requirements of each task. For instance, a single request for subtitle generation might trigger one task for Pyannote (for voice activity detection) and potentially 100 tasks for Whisper (for speech-to-text), with only the latter requiring dynamic scaling due to higher demand.
  • Ensure system flexibility: We aimed to create a highly flexible system capable of quickly adapting to any new AI request. This required the ability to load models in an ad-hoc manner, ensuring our system could immediately respond to and serve new or evolving AI demands without significant reconfiguration.

We Made These Mistakes So You Don’t Have To

Sharing is caring: Here are three things to keep in mind when setting up your own EDA for AI workflows to get the best results right away.

  • Avoid common pitfalls: Design the system with fault tolerance in mind from the outset. Anticipate potential failures in individual components and ensure that the architecture can gracefully handle these incidents without disrupting the overall workflow. Effective error handling and retry mechanisms are essential.
  • Choose the correct topology: Implementing a mediator pattern topology can significantly simplify the implementation of business logic and the modularity and reusability of AI models. Initially employing a broker topology, we encountered limitations in managing complex AI tasks due to its linear communication model. To address these challenges and improve our system’s scalability and modularity, we transitioned to a mediator topology. This change introduced a central mediator to manage AI business logic and orchestrate events, allowing components to operate independently and more efficiently. The shift streamlined the development process and significantly enhanced the system’s adaptability and robustness.
  • Plan for rapid integration: Flexibility is key in any architecture designed for AI workflows. Allow for the quick addition and integration of new models into end services, essential in this fast-evolving field, where the ability to swiftly adopt and deploy new models can provide a significant competitive advantage.

Future Directions in Event-Driven AI Architectures

We’re always looking to the future and innovating our EDA AI systems at Gcore. Two future directions look particularly promising.

Continuous Learning and Adaptation

Incorporating mechanisms for continuous learning and model adaptation requires periodically updating models with new data and, less obviously, dynamically adjusting workflows and processes based on real-time performance metrics and feedback loops. As AI models continue to grow in complexity and capability, developing robust systems for continuous evaluation and deployment becomes critical. This includes automated performance monitoring, version control, and seamless deployment of updated models without disrupting service.

Embracing LLMs and GAI

Our architecture needs to adapt to AI’s changes. While the rise of LLMs and GAI might suggest that traditional AI inference workflows could become obsolete, the reality is that our proposed architecture supports critical areas of AI deployment, such as continuous model learning and evaluation. Our event-driven system’s flexibility makes it well-suited to integrate LLMs for enhanced decision-making processes and to adapt workflows in response to the capabilities of GAI, where AI models will increasingly be replaced by a single, more powerful one.

Conclusion

We’ve found that adopting an EDA for workflow processing offers significant benefits for scalability, reliability, and efficiency in managing complex AI systems in cloud and streaming environments. This approach addresses critical challenges, including dynamic scaling of large ML models, system robustness, and latency reduction. EDA is already proving itself essential for the evolution of scalable and efficient AI systems.

To experience the end product for yourself, check out Gcore Video Streaming and its impressive AI features, including transcription, translation, content moderation, and object recognition.

Try Gcore Video Streaming free for 14 days

Related articles

3 clicks, 10 seconds: what real serverless AI inference should look like

Deploying a trained AI model could be the easiest part of the AI lifecycle. After the heavy lifting of data collection, training, and optimization, pushing a model into production is where “the rubber hits the road”, meaning the business expects to see the benefits of invested time and resources. In reality, many AI projects fail in production because of poor performance stemming from suboptimal infrastructure conditions.There are broadly speaking 2 paths developers can take when deploying inference: DIY, which is time and resource-consuming and requires domain expertise from several teams within the business, or opt for the ever-so-popular “serverless inference” solution. The latter is supposed to simplify the task at hand and deliver productivity, cutting down effort to seconds, not hours. Yet most platforms offering “serverless” AI inference still feel anything but effortless. They require containers, configs, and custom scripts. They bury users in infrastructure decisions. And they often assume your data scientists are also DevOps engineers. It’s a far cry from what “serverless” was meant to be.At Gcore, we believe real serverless inference means this: three clicks and ten seconds to deploy a model. That’s not a tagline—it’s the experience we built. And it’s what infrastructure leaders like Mirantis are now enabling for enterprises through partnerships with Gcore.Why deployment UX matters more than you thinkServerless inference isn’t just a backend architecture choice. It’s a business enabler, a go-to-market accelerator, an ROI optimizer, a technology democratizer—or, if poorly executed, a blocker.The reality is that inference workloads are a key point of interface between your AI product or service and the customer. If deployment is clunky, you’re struggling to keep up with demand. If provisioning takes too long, latency spikes, performance is inconsistent, and ultimately your service doesn’t scale. And if the user experience is unclear or inconsistent, customers end up frustrated—or worse, they churn.Developers and data scientists don’t want to manage infrastructure. They want to bring a model and get results without becoming cloud operators in the process.Dom Wilde, SVP Marketing, MirantisThat’s why deployment UX is no longer a nice-to-have. It’s the core of your product.The benchmark: 3 clicks, 10 secondsWe built Gcore Everywhere Inference to remove every unnecessary step between uploading a model and running it in production. That includes GPU provisioning, routing, scaling, isolation, and endpoint generation, all handled behind the scenes.The result is what we believe should be the default:Upload a modelConfirm deployment parametersClick deployAnd within ten seconds, you’re serving live inference.For platform teams supporting AI workloads, this isn’t just a better workflow. It’s a transformation.With Gcore, our customers can deliver not just self-service infrastructure but also inference as a product. End users can deploy models in seconds, and customers don’t have to micromanage the backend to support that.Dom Wilde, MirantisSimple frontend, powerful backendIt’s worth saying: simplifying the frontend doesn’t mean weakening the backend. Gcore’s platform is built for scale and performance, offering the following:Multi-tenant GPU isolationSmart routing based on location and loadAuto-scaling based on demandA unified API and UI for both automation and accessibilityWhat makes this meaningful isn’t just the tech, it’s the way it vanishes behind the scenes. With Gcore, Mirantis customers can deliver low-latency inference, maximize GPU efficiency, and meet data privacy requirements without touching low-level infrastructure.Many enterprises and cloud customers worry about underutilized GPUs. Now, every cycle is optimized. The platform handles the complexity so our customers can focus on building value.Dom Wilde, MirantisIf it’s not 3 clicks and 10 seconds, it’s not really serverlessThere’s a growing gap between what serverless inference promises and what most platforms deliver. Many cloud providers are focused on raw compute or orchestration, but overlook the deployment layer. That’s a mistake. Because when it comes to customer experience, ease of deployment is the product.Mirantis saw that early on and partnered with Gcore to bring inference-as-a-service to CSP and enterprise customers, fast. Now, customers can launch new offerings more quickly, reduce operational overhead, and improve the user experience with a simple, elegant deployment path.Redefine serverless AI with GcoreIf it takes a config file, a container, and a support ticket to deploy a model, it’s not serverless—it’s server-less-ish. With Gcore Everywhere Inference, we’ve set a new benchmark: three clicks and ten seconds to deploy AI. And, our model catalog offers a variety of popular models so you can get started right away.Whether you’re frustrated with slow, inefficient model deployments or looking for the most effective way to start using AI for your company, you need Gcore Everywhere Inference. Give our experts a call to discover how we can simplify your AI so you can focus on scaling and business logic.Let’s talk about your AI project

Run AI inference faster, smarter, and at scale

Training your AI models is only the beginning. The real challenge lies in running them efficiently, securely, and at scale. AI and reality meet in inference—the continuous process of generating predictions in real time. It is the driving force behind virtual assistants, fraud detection, product recommendations, and everything in between. Unlike training, inference doesn’t happen once; it runs continuously. This means that inference is your operational engine rather than just technical infrastructure. And if you don’t manage it well, you’re looking at skyrocketing costs, compliance risks, and frustrating performance bottlenecks. That’s why it’s critical to rethink where and how inference runs in your infrastructure.The hidden cost of AI inferenceWhile training large models often dominates the AI conversation, it’s inference that carries the greatest operational burden. As more models move into production, teams are discovering that traditional, centralized infrastructure isn’t built to support inference at scale.This is particularly evident when:Real-time performance is critical to user experienceRegulatory frameworks require region-specific data processingCompute demand fluctuates unpredictably across time zones and applicationsIf you don’t have a clear plan to manage inference, the performance and impact of your AI initiatives could be undermined. You risk increasing cloud costs, adding latency, and falling out of compliance.The solution: optimize where and how you run inferenceOptimizing AI inference isn’t just about adding more infrastructure—it’s about running models smarter and more strategically. In our new white paper, “How to Optimize AI Inference for Cost, Speed, and Compliance”, we break it down into three key decisions:1. Choose the right stage of the AI lifecycleNot every workload needs a massive training run. Inference is where value is delivered, so focus your resources on where they matter most. Learn when to use pretrained models, when to fine-tune, and when simple inference will do the job.2. Decide where your inference should runFrom the public cloud to on-prem and edge locations, where your model runs, impacts everything from latency to compliance. We show why edge inference is critical for regulated, real-time use cases—and how to deploy it efficiently.3. Match your model and infrastructure to the taskBigger models aren’t always better. We cover how to choose the right model size and infrastructure setup to reduce costs, maintain performance, and meet privacy and security requirements.Who should read itIf you’re responsible for turning AI from proof of concept into production, this guide is for you.Inference is where your choices immediately impact performance, cost, and customer experience, whether you’re managing infrastructure, developing models, or building AI-powered solutions. This white paper will help you cut through complexity and focus on what matters most: running smarter, faster, and more scalable inference.It’s especially relevant if you’re:A machine learning engineer or AI architect deploying models across environmentsA product manager introducing real-time AI featuresA technical leader or decision-maker managing compute, cloud spend, or complianceOr simply trying to scale AI without sacrificing controlIf inference is the next big challenge on your roadmap, this white paper is where to start.Scale AI inference seamlessly with GcoreEfficient, scalable inference is critical to making AI work in production. Whether you’re optimizing for performance, cost, or compliance, you need infrastructure that adapts to real-world demand. Gcore Everywhere Inference brings your models closer to users and data sources—reducing latency, minimizing costs, and supporting region-specific deployments.Our latest white paper, “How to optimize AI inference for cost, speed, and compliance”, breaks down the strategies and technologies that make this possible. From smart model selection to edge deployment and dynamic scaling, you’ll learn how to build an inference pipeline that delivers at scale.Ready to make AI inference faster, smarter, and easier to manage?Download the white paper

Securing vibe coding: balancing speed with cybersecurity

Vibe coding has emerged as a cultural phenomenon in 2025 software development. It’s a style defined by coding on instinct and moving fast, often with the help of AI, rather than following rigid plans. It lets developers skip exhaustive design phases and dive straight into building, writing code (or prompting an AI to write it) in a rapid, conversational loop. It has caught on fast and boasts a dedicated following of developers hosting vibe coding game jams.So why all the buzz? For one, vibe coding delivers speed and spontaneity. Enthusiasts say it frees them to prototype at the speed of thought, without overthinking architecture. A working feature can be blinked into existence after a few AI-assisted prompts, which is intoxicating for startups chasing product-market fit. But as with any trend that favors speed over process, there’s a flip side.This article explores the benefits of vibe coding and the cybersecurity risks it introduces, examines real incidents where "just ship it" coding backfired, and outlines how security leaders can keep up without slowing innovation.The upside: innovation at breakneck speedVibe coding addresses real development needs and has major benefits:Allows lightning-fast prototyping with AI assistance. Speed is a major advantage, especially for startups, and allows faster validation of ideas and product-market fit.Prioritizes creativity over perfection, rewarding flow and iteration over perfection.Lowers barriers to entry for non-experts. AI tooling lowers the skill floor, letting more people code.Produces real success stories, like a game built via vibe coding hitting $1M ARR in 17 days.Vibe coding aligns well with lean, agile, and continuous delivery environments by removing overhead and empowering rapid iteration.When speed bites backVibe coding isn’t inherently insecure, but the culture of speed it promotes can lead to critical oversights, especially when paired with AI tooling and lax process discipline. The following real-world incidents aren’t all examples of vibe coding per se, but they illustrate the kinds of risks that arise when developers prioritize velocity over security, skip reviews, or lean too heavily on AI without safeguards. These three cases show how fast-moving or under-documented development practices can open serious vulnerabilities.xAI API key leak (2025)A developer at Elon Musk’s AI company, xAI, accidentally committed internal API keys to a public GitHub repo. These keys provided access to proprietary LLMs trained on Tesla and SpaceX data. The leak went undetected for two months, exposing critical intellectual property until a researcher reported it. The error likely stemmed from fast-moving development where secrets were hardcoded for convenience.Malicious NPM packages (2024)In January 2024, attackers uploaded npm packages like warbeast2000 and kodiak2k, which exfiltrated SSH keys from developer machines. These were downloaded over 1,600 times before detection. Developers, trusting AI suggestions or searching hastily for functionality, unknowingly included these malicious libraries.OpenAI API key abuse via Replit (2024)Hackers scraped thousands of OpenAI API keys from public Replit projects, which developers had left in plaintext. These keys were abused to access GPT-4 for free, racking up massive bills for unsuspecting users. This incident shows how projects with weak secret hygiene, which is a risk of vibe coding, become easy targets.Securing the vibe: smart risk mitigationCybersecurity teams can enable innovation without compromising safety by following a few simple cybersecurity best practices. While these don’t offer 100% security, they do mitigate many of the major vulnerabilities of vibe coding.Integrate scanning tools: Use SAST, SCA, and secret scanners in CI/CD. Supplement with AI-based code analyzers to assess LLM-generated code.Shift security left: Embed secure-by-default templates and dev-friendly checklists. Make secure SDKs and CLI wrappers easily available.Use guardrails, not gates: Enable runtime protections like WAF, bot filtering, DDoS defense, and rate limiting. Leverage progressive delivery to limit blast radius.Educate, don’t block: Provide lightweight, modular security learning paths for developers. Encourage experimentation in secure sandboxes with audit trails.Consult security experts: Consider outsourcing your cybersecurity to an expert like Gcore to keep your app or AI safe.Secure innovation sustainably with GcoreVibe coding is here to stay, and for good reason. It unlocks creativity and accelerates delivery. But it also invites mistakes that attackers can exploit. Rather than fight the vibe, cybersecurity leaders must adapt: automating protections, partnering with devs, and building a culture where shipping fast doesn't mean shipping insecure.Want to secure your edge-built AI or fast-moving app infrastructure? Gcore’s Edge Security platform offers robust, low-latency protection with next-gen WAAP and DDoS mitigation to help you innovate confidently, even at speed. As AI and security experts, we understand the risks and rewards of vibe coding, and we’re ideally positioned to help you secure your workloads without slowing down development.Into vibe coding? Talk to us about how to keep it secure.

Qwen3 models available now on Gcore Everywhere Inference

We’ve expanded our model library for Gcore Everywhere Inference with three powerful additions from the Qwen3 series. These new models bring advanced reasoning, faster response times, and even better multilingual support, helping you power everything from chatbots and coding tools to complex R&D workloads.With Gcore Everywhere Inference, you can deploy Qwen3 models in just three clicks. Read on to discover what makes Qwen3 special, which Qwen3 model best suits your needs, and how to deploy it with Gcore today.Introducing the new Qwen3 modelsQwen3 is the latest evolution of the Qwen series, featuring both dense and Mixture-of-Experts (MoE) architectures. It introduces dual-mode reasoning, letting you toggle between “thinking” and “non-thinking” modes to balance depth and speed:Thinking mode (enable_thinking=True): The model adds a <think>…</think> block to reason step-by-step before generating the final response. Ideal for tasks like code generation or math where accuracy and logic matter.Non-thinking mode (enable_thinking=False): Skips the reasoning phase to respond faster. Best for straightforward tasks where speed is a priority.Model sizes and use casesWith three new sizes available, you can choose the level of performance required for your use case:Qwen3-14B: A 14B parameter model tuned for responsive, multilingual chat and instruction-following. Fast, versatile, and ready for real-time applications with lightning-fast responses.Qwen3-30B-A3B: Built on the Arch-3 backbone, this 30B model offers advanced reasoning and coding capabilities. It’s ideal for applications that demand deeper understanding and precision while balancing performance. It provides high-quality output with faster inference and better efficiency.Qwen3-32B: The largest Qwen3 model yet, designed for complex, high-performance tasks across reasoning, generation, and multilingual domains. It sets a new standard for what’s achievable with Gcore Everywhere Inference, delivering exceptional results with maximum reasoning power. Ideal for complex computation and generation tasks where every detail matters.ModelArchitectureTotal parametersActive parametersContext lengthBest suited forQwen3-14BDense14B14B128KMultilingual chatbots, instruction-following tasks, and applications requiring strong reasoning capabilities with moderate resource consumption.Qwen3-30B-A3BMoE30B3B128KScenarios requiring advanced reasoning and coding capabilities with efficient resource usage; suitable for real-time applications due to faster inference times.Qwen3-32BDense32B32B128KHigh-performance tasks demanding maximum reasoning power and accuracy; ideal for complex R&D workloads and precision-critical applications.How to deploy Qwen3 models with Gcore in just a few clicksGetting started with Qwen3 on Gcore Everywhere Inference is fast and frictionless. Simply log in to the Gcore Portal, navigate to the AI Inference section, and select your desired Qwen3 model. From there, deployment takes just three clicks—no setup scripts, no GPU wrangling, no DevOps overhead. Check out our docs to discover how it works.Deploying Qwen3 via the Gcore Customer Portal takes just three clicksPrefer to deploy programmatically? Use the Gcore API with your project credentials. We offer quick-start examples in Python and cURL to get you up and running fast.Why choose Qwen3 + Gcore?Flexible performance: Choose from three models tailored to different workloads and cost-performance needs.Immediate availability: All models are live now and deployable via portal or API.Next-gen architecture: Dense and MoE options give you more control over reasoning, speed, and output quality.Scalable by design: Built for production-grade performance across industries and use cases.With the latest Qwen3 additions, Gcore Everywhere Inference continues to deliver on performance, scalability, and choice. Ready to get started? Get a free account today to explore Qwen3 and deploy with Gcore in just a few clicks.Sign up free to deploy Qwen3 today

Run AI workloads faster with our new cloud region in Southern Europe

Good news for businesses operating in Southern Europe! Our newest cloud region in Sines, Portugal, gives you faster, more local access to the infrastructure you need to run advanced AI, ML, and HPC workloads across the Iberian Peninsula and wider region. Sines-2 marks the first region launched in partnership with Northern Data Group, signaling a new chapter in delivering powerful, workload-optimized infrastructure across Europe.Strategically positioned in Portugal, Sines-2 enhances coverage in Southern Europe, providing a lower-latency option for customers operating in or targeting this region. With the explosive growth of AI, machine learning, and compute-intensive workloads, this new region is designed to meet escalating demand with cutting-edge GPU and storage capabilities.Built for AI, designed to scaleSines-2 brings with it next-generation infrastructure features, purpose-built for today’s most demanding workloads:NVIDIA H100 GPUs: Unlock the full potential of AI/ML training, high-performance computing (HPC), and rendering workloads with access to H100 GPUs.VAST NFS (file sharing protocol) support: Benefit from scalable, high-throughput file storage ideal for data-intensive operations, research, and real-time AI workflows.IaaS portfolio: Deploy Virtual Machines, manage storage, and scale infrastructure with the same consistency and reliability as in our flagship regions.Organizations operating in Portugal, Spain, and nearby regions can now deploy workloads closer to end users, improving application performance. For finance, healthcare, public sector, and other organisations running sensitive workloads that must stay within a country or region, Sines-2 is an easy way to access state-of-the-art GPUs with simplified compliance. Whether you're building AI models, running simulations, or managing rendering pipelines, Sines-2 offers the performance and proximity you need.And best of all, servers are available and ready to deploy today.Run your AI workloads in Portugal todayWith Sines-2 and our partnership with Northern Data Group, we’re making it easier than ever for you to run AI workloads at scale. If you need speed, flexibility, and global reach, we’re ready to power your next AI breakthrough.Unlock the power of Sines-2 today

How AI is transforming gaming experiences

AI is reshaping how games are played, built, and experienced. Although we are in a period of flux where the optimal combination of human and artificial intelligence is still being ironed out, the potential for AI to greatly enhance both gameplay and development is clear.PlayStation CEO Hermen Hulst recently emphasized the importance of striking the right balance between the handcrafted human touch and the revolutionary advances that AI brings. AI will not replace the decades of design, storytelling, and craft laid down by humans—it will build on that foundation to unlock entirely new possibilities. In addition to an enhanced playing experience, AI is shaking up gaming aspects such as real-time analytics, player interactions, content generation, and security.In this article, we explore three specific developments that are enriching gaming storyworlds, as well as the technology that’s bringing them to life and what the future might hold.#1 Responsive NPC behavior and smarter opponentsAI is evolving to create more realistic, adaptive, and intelligent non-player characters (NPCs) that can react to individual player choices with greater depth and reasoning. The algorithms allow NPCs to respond dynamically to players’ decisions so they can adjust their strategies and behaviors in real time. This provides a more immersive and dynamic gameplay environment and means gamers have endless opportunities to experience new gaming adventures and write their own story every time.A recent example is Red Dead Redemption 2, which enables players to interact with NPCs in the Wild West. Players were impressed by its complexity and the ability to interact with fellow cowboys and bar patrons. Although this is limited for now, eventually, it could become like a video game version of the TV series Westworld, in which visitors pay to interact with incredibly lifelike robots in a Wild West theme park.AI also gives in-game opponents more “agency,” making them more reactive and challenging for players to defeat. This means smarter, more unpredictable enemies who provide a heightened level of achievement, novelty, and excitement for players.For example, AI Limit, released in early 2025, is an action RPG incorporating AI-driven combat mechanics. While drawing comparisons to Soulslike games, the developers emphasize its unique features, including the Sync Rate system, which adds depth to combat interactions.#2 AI-assisted matchmaking and player behavior predictionsAI-powered analytics can identify and predict player skill levels and playing styles, leading to more balanced and competitive matchmaking. A notable example is the implementation of advanced matchmaking systems in competitive games such as Apex Legends and Call of Duty: Modern Warfare III. These titles use AI algorithms to analyze not just skill levels but also playstyle preferences, weapon selections, and playing patterns to create matches optimized for player retention and satisfaction. The systems continuously learn from match outcomes to predict player behavior and create more balanced team compositions across different skill levels.By analyzing a player’s past performance, AI can also create smarter team formations. This makes for fairer and more rewarding multiplayer games, as players are matched with others who complement their skill and strategy.AI can monitor in-game interactions to detect and mitigate toxic behavior. This helps encourage positive social dynamics and foster a more collaborative and friendly online environment.#3 Personalized gaming experiencesMultiplayer games can use AI to analyze player behavior in real time, adjusting difficulty levels and suggesting tailored missions, providing rich experiences unique to each player. This creates personalized, player-centric gameplay that evolves dynamically and can change over time as a player’s knowledge and ability improve.Games like Minecraft and Skyrim already use AI to adjust difficulty and offer dynamic content, while Oasis represents a breakthrough as an AI-generated Minecraft-inspired world. The game uses generative AI to predict and render gameplay frames in real time, creating a uniquely responsive environment.Beyond world generation, modern games are also incorporating AI chatbots that give players real-time coaching and personalized skill development tips.How will AI continue to shape gaming?In the future, AI will continue to impact not just the player experience but also the creation of games. We anticipate AI revolutionizing game development in the following areas:Procedural content generation: AI will create vast, dynamic worlds or generate storylines, allowing for more expansive and diverse game worlds than are currently available.Game testing: AI will simulate millions of player interactions to help developers find bugs and improve gameplay.Art and sound design: AI tools will be used to a greater extent than at present to create game art, music, and voiceovers.How Gcore technology is powering AI gaming innovationIn terms of the technology behind the scenes, Gcore Everywhere Inference brings AI models closer to players by deploying them at the edge, significantly reducing latency for training and inference. This powers dynamic features like adaptive NPC behavior, personalized gameplay, and predictive matchmaking without sacrificing performance.Gcore technology differentiates itself with the following features:Supports all major frameworks, including PyTorch, TensorFlow, ONNX, and Hugging Face Transformers, making deploying your preferred model architecture easy.Offers multiple deployment modes, whether in the cloud, on-premise, or across our distributed edge network with 180+ global locations, allowing you to place inference wherever it delivers the best performance for your users.Delivers sub-50ms latency for inference workloads in most regions, even during peak gaming hours, thanks to our ultra-low-latency CDN and proximity to players.Scales horizontally, so studios can support millions of concurrent inferences for dynamic NPC behavior, matchmaking decisions, or in-game voice/chat moderation, without compromising gameplay speed.Keeps your models and training data private through confidential computing and data sovereignty controls, helping you meet compliance requirements across regions including Europe, LATAM, and MENA.With a low-latency infrastructure that supports popular AI frameworks, Gcore Everywhere Inference allows your studio to deploy custom models and deliver more immersive, responsive player experiences at scale. With our confidential computing solutions, you retain full control over your training assets—no data is shared, exposed, or compromised.Deliver next-gen gaming with Gcore AIAI continues to revolutionize industries, and gaming is no exception. The deployment of artificial intelligence can help make games even more exciting for players, as well as enabling developers to work smarter when creating new games.At Gcore, AI is our core and gaming is our foundation. AI is seamlessly integrated into all our solutions with one goal in mind: to help grow your business. As AI continues to evolve rapidly, we're committed to staying at the cutting edge and changing with the future. Contact us today to discover how Everywhere Inference can enhance your gaming offerings.Get a customized consultation about AI gaming deployment

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.