Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
Under attack?

Products

Solutions

Resources

Partners

Why Gcore

  1. Home
  2. Blog
  3. Maximizing AI and HPC Workloads with NVIDIA H200 Tensor Core GPU

Maximizing AI and HPC Workloads with NVIDIA H200 Tensor Core GPU

  • By Gcore
  • January 9, 2024
  • 6 min read
Maximizing AI and HPC Workloads with NVIDIA H200 Tensor Core GPU

In the past decade, the fields of artificial intelligence (AI) in software and high-performance computing (HPC) in hardware have undergone a significant transformation. This revolution has led to breakthrough applications across diverse sectors, improving human life through advancements in fields such as genomic sequencing, fuel conservation, and earthquake prediction. Developing such applications requires researchers and developers to work with a gigantic volume of data using complex algorithms. Such demanding computing tasks require a new generation of data processors capable of tackling parallel and sophisticated workloads. In this article, we’ll explain how the upcoming NVIDIA H200 Tensor Core GPU, slated for release in Q2 of 2024, will help to optimize your AI and HPC workloads. We will also explore how this technology enables the efficient creation of data-driven applications and discuss the current alternatives available.

Why Use GPU for AI and HPC Workloads?

Let’s start by exploring why GPUs are the hardware of choice for running AI and HPC workloads, and what kinds of workloads we’re talking about.

Benefits of GPUs Compared to CPUs

To understand why the new NVIDIA H200 GPU (graphics processing unit) is so innovative compared to its previous GPU, it’s important to understand how GPUs differ from CPUs (central processing units) in application development. GPUs offer distinct advantages in processing speed and efficiency, particularly for tasks involving parallel calculations on a massive amount of data. For an in-depth look at the differences between GPUs and CPUs, particularly in the context of deep learning, see our detailed article on deep learning GPUs.

What Are AI Workloads and Where Do GPUs Fit In?

The development of AI applications encompasses a series of critical processes, each contributing to what we term “AI workloads.” These processes include:

  • Data collection
  • Data preprocessing
  • Model selection
  • Model training
  • Model testing
  • Model optimization
  • Deployment
  • Continuous learning

GPUs play a major role in accelerating these workloads, especially in tasks like deep learning, due to their ability to process thousands of threads simultaneously, making them excellent at handling the complex mathematical computations required in AI development. The H200 stands out as an apt choice for such tasks due to its impressive computational power and high memory bandwidth, which significantly reduce the time taken to train and run AI models, thereby boosting efficiency and productivity.

Industry Use Cases for NVIDIA H200

Recent significant advances in high-performance computing and breakthroughs in large language models have expanded research and application development into previously challenging fields like climate science and genome sequencing. The NVIDIA H200, anticipated to be the highest-performance GPU on the market, will play a crucial role in this progress when it’s released in Q2 2024. To explore the advancements of the NVIDIA H200 over its predecessors like the A100 and H100, check out our comparative analysis.

Scientific Simulations

NVIDIA has a history of facilitating rapid scientific simulations in areas such as 3D workflows, and catalyst modeling, particularly through products like the NVIDIA Omniverse. This facilitates the development of 3D workflows and applications based on Universal Scene Description (USD) across various industries, including robotics, gaming, chemicals, and automotive. A notable example is the BMW Group, which used NVIDIA Omniverse to create its first entirely virtual factory.

The introduction of the H200 chip is expected to further accelerate and enhance these scientific simulations within the NVIDIA product range.

Genomic Software

In biomedical engineering, a field poised for rapid growth, NVIDIA Clara is a key player. This genomic software suite accelerates various genome sequencing analyses, supporting the development of a wide range of healthcare applications, including drug discovery, precision medicine, and clinical diagnostics.

With the introduction of the H200 chip, genomic software could yield faster, more affordable results. This could positively affect patient outcomes in areas like cancer treatment.

Financial Analysis

In the past, financial analysis used CPUs as the main calculation engine. With the evolution of AI and use of GPUs, faster and more precise financial analysis calculations are possible. Many cloud providers now offer AI GPU infrastructure, enabling financial firms to adopt a cost-effective, pay-as-you-go approach to their research and application development.

The new H200 chip further accelerates research outcomes and the development of new features, providing a competitive edge in the fast-paced and risk-oriented financial market.

Image and Video Processing

Industries like gaming and streaming require enormous computing power and memory for image and video processing. With this in mind, NVIDIA created the NVIDIA RTX technology which has revolutionized computer graphics with the latest enhancements in AI and simulations.

Wylie Co., a digital imagery studio known for its Oscar-winning work on Dune, is one of the most successful studios to have heavily applied AI successfully in its rendering process, wire removal, and visual effects. After switching from CPUs to GPUs, Wylie achieved a 24-fold performance improvement and reduced energy consumption to one-fifth of its previous level.

With the introduction of the new H200 chip, companies working with image and video processing can raise their performance while simultaneously reducing energy consumption—a win for business revenue and for the environment.

How NVIDIA H200 Drives AI and HPC Workloads

The NVIDIA H200 boasts innovative HBM3e memory technology, delivering 141 GB of memory at a remarkable speed of 4.8 TB per second. This doubles the capacity and delivers a 2.4-fold increase in bandwidth compared to the NVIDIA A100 chip. The H200 GPU chip also offers 1.4 times more bandwidth than the H100 GPU, marking a significant leap in performance and energy efficiency. Detailed specifications can be found on the NVIDIA H200 data sheet.

High-Performance AI Inference

The NVIDIA H200 will drive a new era in high-performance AI inference. For those new to the concept, AI inference is the process where a trained machine learning model applies its knowledge to previously unseen data, generating relevant outputs for specific inputs in a given context. For a comprehensive understanding of how it works, take a look at our detailed AI inference article. This process is integral to the functionality of large language models (LLMs) like OpenAI’s Chat-GPT or Google’s Bard, which have seen dramatic growth over the last few years. Notable large language models include GPT-3 175B, Llama2 70B, and Llama2 13B.

As LLMs advance, the demand for more powerful hardware—such as the H200—to support their inference processes increases. The NVIDIA H200 GPU has demonstrated exceptional performance, offering 18 times the efficiency of the A100 GPU in a recent benchmark for the GPT-3 175B model. The NVIDIA H100 GPU, by comparison, proved to be 11 times more efficient than the A100 GPU.

Figure 1: Performance improvement for GPT-3 application using A100, H100, and H200 GPUs

The NVIDIA GPU chip comes with the latest version of its own built-in LLM, TensorRT-LLM, a toolkit that provides optimized solutions for inferencing large language models like GPT-3 and Llama 2. When running on the Llama-70B model, the new NVIDIA H200 chip achieves a 1.9-fold improvement in throughput optimization over the NVIDIA H100, which uses the previous version of TensorRT-LLM.

Figure 2: Throughput improvement that the H200 GPU chip offers when running on the Llama 70B model, compared with the previous H100 chip

In the case of the Llama 2 13B model, the NVIDIA H200 GPU chip achieves up to 1.4 times the throughput optimization compared to its predecessor, the NVIDIA H100 GPU.

Figure 3: Details of the TensorRT-LLM improvement for the H200 chip, compared to the H100 chip

Stability AI, one of the world’s leading open-source generative AI companies, significantly enhanced the speed of its text-to-image AI product by integrating NVIDIA TensorRT. This integration, along with the use of the converted ONNX (Open Neural Network Exchange) model on NVIDIA H100 chips led to a notable performance gain. This product can now generate high-definition images in just 1.47 seconds, effectively doubling its previous performance.

Below is a summary of the enhanced image throughput performance achieved by Stable Diffusion XL 1.0. This model, designed to generate and modify images based on text prompts, was created by Stability AI in collaboration with NVIDIA.

Figure 4: Details in improvement for image throughput for 30 steps at 1024×1024 for Stable Diffusion XL 1.0

By applying the NVIDIA TensorRT library to their chips, Stability AI has significantly enhanced the image throughput of Stable Diffusion XL 1.0, particularly on the NVIDIA H100 chips, achieving up to a 70% improvement.

With the introduction of the more optimized latest TensorRT version on the NVIDIA H200 chip, companies like Stability AI, utilizing open-source, generative libraries such as Stable Diffusion XL 1.0, are poised to experience even greater performance gains.

High-Performance Computing

In AI, handling complex calculations on large datasets requires robust high-performance computing (HPC) capabilities. The NVIDIA H200 chip significantly improves performance, showing a 110-fold improvement over the Dual x86 CPU in the MILC project, a collaborative project studying the theory of strong interactions of subatomic physics.

Figure 5: H200 performance improvement for the MILC project, compared to the Dual x86 CPU

On average, the NVIDIA H200 chip doubles the performance of the NVIDIA A100 chip for HPC applications, compared to the 1.7-fold improvement shown by the NVIDIA H100.

Figure 6: Overall performance improvement of the H200 for HPC applications compared to the H100 and A100 GPUs

Energy Efficiency

In recent years, software companies have grown aware of the environmental impact of software development. NVIDIA employs sustainable computing best practices when creating its products.

With the H200 GPU chip, energy efficiency and TCO (total cost of ownership)—an estimation of the expenses associated with purchasing, deploying, using, and retiring a piece of equipment—reach new levels. While the H200 GPU chip offers enormous performance improvements, it only consumes as much power as its predecessor, the H100. Moreover, the H200 GPU is 50% more efficient than the H100 for both energy usage and total cost of ownership.

Figure 7: The H200 chip’s reduction in LLM energy use compared to the H100

This significant improvement in energy efficiency for the H200 GPU chip is achieved by optimizing the NVIDIA Hopper architecture, enabling better performance from its GPUs.

Conclusion

The new NVIDIA H200 Tensor Core GPU helps to maximize the AI and HPC workloads so that you can create data-intensive applications more easily and effectively. However, NVIDIA H200 GPU chips are expected to be costly to run, especially for projects that are in MVP phases or applications that only occasionally need to work with large volumes of data and workloads. In such scenarios, it’s prudent to consider a cloud platform that offers a pay-per-use plan, rather than investing in high-performance GPU infrastructure yourself.

With Gcore AI GPU infrastructure, you can choose the NVIDIA GPU solution that best fits your workload. You’re only charged for actual use, optimizing the cost of your AI infrastructure. We offer the latest and most efficient options, including A100s and H100s, with L40S coming soon. Explore the differences in our dedicated article.

Get Gcore AI GPU

Related articles

How gaming studios can use technology to safeguard players

Online gaming can be an enjoyable and rewarding pastime, providing a sense of community and even improving cognitive skills. During the pandemic, for example, online gaming was proven to boost many players’ mental health and provided a vital social outlet at a time of great isolation. However, despite the overall benefits of gaming, there are two factors that can seriously spoil the gaming experience for players: toxic behavior and cyber attacks.Both toxic behavior and cyberattacks can lead to players abandoning games in order to protect themselves. While it’s impossible to eradicate harmful behaviors completely, robust technology can swiftly detect and ban bullies as well as defend against targeted cyberattacks that can ruin the gaming experience.This article explores how gaming studios can leverage technology to detect toxic behavior, defend against cyber threats, and deliver a safer, more engaging experience for players.Moderating toxic behavior with AI-driven technologyToxic behavior—including harassment, abusive messages, and cheating—has long been a problem in the world of gaming. Toxic behavior not only affects players emotionally but can also damage a studio’s reputation, drive churn, and generate negative reviews.The online disinhibition effect leads some players to behave in ways they may not in real life. But even when it takes place in a virtual world, this negative behavior has real long-term detrimental effects on its targets.While you can’t control how players behave, you can control how quickly you respond.Gaming studios can implement technology that makes dealing with toxic incidents easier and makes gaming a safer environment for everyone. While in the past it may have taken days to verify a complaint about a player’s behavior, today, with AI-driven security and content moderation, toxic behavior can be detected in real time, and automated bans can be enforced. The tool can detect inappropriate images and content and includes speech recognition to detect derogatory or hateful language.In gaming, AI content moderation analyzes player interactions in real time to detect toxic behavior, harmful content, and policy violations. Machine learning models assess chat, voice, and in-game media against predefined rules, flagging or blocking inappropriate content. For example, let’s say a player is struggling with in-game harassment and cheating. With AI-powered moderation tools, chat logs and gameplay behavior are analyzed in real time, identifying toxic players for automated bans. This results in healthier in-game communities, improved player retention, and a more pleasant user experience.Stopping cybercriminals from ruining the gaming experienceAnother factor negatively impacting the gaming experience on a larger scale is cyberattacks. Our recent Radar Report showed that the gaming industry experienced the highest number of DDoS attacks in the last quarter of 2024. The sector is also vulnerable to bot abuse, API attacks, data theft, and account hijacking.Prolonged downtime damages a studio’s reputation—something hackers know all too well. As a result, gaming platforms are prime targets for ransomware, extortion, and data breaches. Cybercriminals target both servers and individual players’ personal information. This naturally leads to a drop in player engagement and widespread frustration.Luckily, security solutions can be put in place to protect gamers from this kind of intrusion:DDoS protection shields game servers from volumetric and targeted attacks, guaranteeing uptime even during high-profile launches. In the event of an attack, malicious traffic is mitigated in real-time, preventing zero downtime and guaranteeing seamless player experiences.WAAP secures game APIs and web services from bot abuse, credential stuffing, and data breaches. It protects against in-game fraud, exploits, and API vulnerabilities.Edge security solutions reduce latency, protecting players without affecting game performance. The Gcore security stack helps ensure fair play, protecting revenue and player retention.Take the first steps to protecting your customersGaming should be a positive and fun experience, not fraught with harassment, bullying, and the threat of cybercrime. Harmful and disruptive behaviors can make it feel unsafe for everyone to play as they wish. That’s why gaming studios should consider how to implement the right technology to help players feel protected.Gcore was founded in 2014 with a focus on the gaming industry. Over the years, we have thwarted many large DDoS attacks and continue to offer robust protection for companies such as Nitrado, Saber, and Wargaming. Our gaming specialization has also led us to develop game-specific countermeasures. If you’d like to learn more about how our cybersecurity solutions for gaming can help you, get in touch.Speak to our gaming solutions experts today

Gcore and Northern Data Group partner to transform global AI deployment

Gcore and Northern Data Group have joined forces to launch a new chapter in enterprise AI. By combining high-performance infrastructure with intelligent software, the commercial and technology partnership will make it dramatically easier to deploy AI applications at scale—wherever your users are. At the heart of this exciting new partnership is a shared vision: global, low-latency, secure AI infrastructure that’s simple to use and ready for production.Introducing the Intelligence Delivery NetworkAI adoption is accelerating, but infrastructure remains a major bottleneck. Many enterprises discover blockers regarding latency, compliance, and scale, especially when deploying models in multiple regions. The traditional cloud approach often introduces complexity and overhead just when speed and simplicity matter most.That’s where the Intelligence Delivery Network (IDN) comes in.The IDN is a globally distributed AI network built to simplify inference at the edge. It combines Northern Data’s state-of-the-art infrastructure with Gcore Everywhere Inference to deliver scalable, high-performance AI across 180 global points of presence.By locating AI workloads closer to end users, the IDN reduces latency and improves responsiveness—without compromising on security or compliance. Its geo-zoned, geo-balanced architecture ensures resilience and data locality while minimizing deployment complexity.A full AI deployment toolkitThe IDN is a full AI deployment toolkit built on Gcore’s cloud-native platform. The solution offers a vertically integrated stack designed for speed, flexibility, and scale. Key components include the following:Managed Kubernetes for orchestrationA container-based deployment engine (Docker)An extensive model library, supporting open-source and custom modelsEverywhere Inference, Gcore’s software for distributing inferencing across global edge points of presenceThis toolset enables fast, simple deployments of AI workloads—with built-in scaling, resource management, and observability. The partnership also unlocks access to one of the world’s largest liquid-cooled GPU clusters, giving AI teams the horsepower they need for demanding workloads.Whether you’re building a new AI-powered product or scaling an existing model, the IDN provides a clear path from development to production.Built for scale and performanceThe joint solution is built with the needs of enterprise customers in mind. It supports multi-tenant deployments, integrates with existing cloud-native tools, and prioritizes performance without sacrificing control. Customers gain the flexibility to deploy wherever and however they need, with enterprise-grade security and compliance baked in.Andre Reitenbach, CEO of Gcore, comments, “This collaboration supports Gcore’s mission to connect the world to AI anywhere and anytime. Together, we’re enabling the next generation of AI applications with low latency and massive scale.”“We are combining Northern Data’s heritage of HPC and Data Center infrastructure expertise, with Gcore’s specialization in software innovation and engineering.” says Aroosh Thillainathan, Founder and CEO of Northern Data Group. “This allows us to accelerate our vision of delivering software-enabled AI infrastructure across a globally distributed compute network. This is a key moment in time where the use of AI solutions is evolving, and we believe that this partnership will form a key part of it.”Deploy AI smarter and faster with Gcore and Northern Data GroupAI is the new foundation of digital business. Deploying it globally shouldn’t require a team of infrastructure engineers. With Gcore and Northern Data Group, enterprise teams get the tools and support they need to run AI at the edge at scale and at speed.No matter what you and your teams are trying to achieve with AI, the new Intelligence Delivery Network is built to help you deploy smarter and faster.Read the full press release

How to achieve compliance and security in AI inference

AI inference applications today handle an immense volume of confidential information, so prioritizing data privacy is paramount. Industries such as finance, healthcare, and government rely on AI to process sensitive data—detecting fraudulent transactions, analyzing patient records, and identifying cybersecurity threats in real time. While AI inference enhances efficiency, decision-making, and automation, neglecting security and compliance can lead to severe financial penalties, regulatory violations, and data breaches. Industries handling sensitive information—such as finance, healthcare, and government—must carefully manage AI deployments to avoid costly fines, legal action, and reputational damage.Without robust security measures, AI inference environments present a unique security challenge as they process real-time data and interact directly with users. This article explores the security challenges enterprises face and best practices for guaranteeing compliance and protecting AI inference workloads.Key inference security and compliance challengesAs businesses scale AI-powered applications, they will likely encounter challenges in meeting regulatory requirements, preventing unauthorized access, and making sure that AI models (whether proprietary or open source) produce reliable and unaltered outputs.Data privacy and sovereigntyRegulations such as GDPR (Europe), CCPA (California), HIPAA (United States, healthcare), and PCI DSS (finance) impose strict rules on data handling, dictating where and how AI models can be deployed. Businesses using public cloud-based AI models must verify that data is processed and stored in appropriate locations to avoid compliance violations.Additionally, compliance constraints restrict certain AI models in specific regions. Companies must carefully evaluate whether their chosen models align with regulatory requirements in their operational areas.Best practices:To maintain compliance and avoid legal risks:Deploy AI models in regionally restricted environments to keep sensitive data within legally approved jurisdictions.Use Smart Routing with edge inference to process data closer to its source, reducing cross-border security risks.Model security risksBad actors can manipulate AI models to produce incorrect outputs, compromising their reliability and integrity. This is known as adversarial manipulation, where small, intentional alterations to input data can deceive AI models. For example, researchers have demonstrated that minor changes to medical images can trick AI diagnostic models into misclassifying benign tumors as malignant. In a security context, attackers could exploit these vulnerabilities to bypass fraud detection in finance or manipulate AI-driven cybersecurity systems, leading to unauthorized transactions or undetected threats.To prevent such threats, businesses must implement strong authentication, encryption strategies, and access control policies for AI models.Best practices:To prevent adversarial attacks and maintain model integrity:Enforce strong authentication and authorization controls to limit access to AI models.Encrypt model inputs and outputs to prevent data interception and tampering.Endpoint protection for AI deploymentsThe security of AI inference does not stop at the model level. It also depends on where and how models are deployed.For private deployments, securing AI endpoints is crucial to prevent unauthorized access.For public cloud inference, leveraging CDN-based security can help protect workloads against cyber threats.Processing data within the country of origin can further reduce compliance risks while improving latency and security.AI models rely on low-latency, high-performance processing, but securing these workloads against cyber threats is as critical as optimizing performance. CDN-based security strengthens AI inference protection in the following ways:Encrypts model interactions with SSL/TLS to safeguard data transmissions.Implements rate limiting to prevent excessive API requests and automated attacks.Enhances authentication controls to restrict access to authorized users and applications.Blocks bot-driven threats that attempt to exploit AI vulnerabilities.Additionally, CDN-based security supports compliance by:Using Smart Routing to direct AI workloads to designated inference nodes, helping align processing with data sovereignty laws.Optimizing delivery and security while maintaining adherence to regional compliance requirements.While CDNs enhance security and performance by managing traffic flow, compliance ultimately depends on where the AI model is hosted and processed. Smart Routing allows organizations to define policies that help keep inference within legally approved regions, reducing compliance risks.Best practices:To protect AI inference environments from endpoint-related threats, you should:Deploy monitoring tools to detect unauthorized access, anomalies, and potential security breaches in real-time.Implement logging and auditing mechanisms for compliance reporting and proactive security tracking.Secure AI inference with Gcore Everywhere InferenceAI inference security and compliance are critical as businesses handle sensitive data across multiple regions. Organizations need a robust, security-first AI infrastructure to mitigate risks, reduce latency, and maintain compliance with data sovereignty laws.Gcore’s edge network and CDN-based security provide multi-layered protection for AI workloads, combining DDoS protection and WAAP (web application and API protection. By keeping inference closer to users and securing every stage of the AI pipeline, Gcore helps businesses protect data, optimize performance, and meet industry regulations.Explore Gcore AI Inference

Mobile World Congress 2025: the year of AI

As Mobile World Congress wrapped up for another year, it was apparent that only one topic was on everyone’s minds: artificial intelligence.Major players—such as Google, Ericsson, and Deutsche Telekom—showcased the various ways in which they’re piloting AI applications—from operations to infrastructure management and customer interactions. It’s clear there is a great desire to see AI move from the research lab into the real world, where it can make a real difference to people’s everyday lives. The days of more theoretical projects and gimmicky robots seem to be behind us: this year, it was all about real-world applications.MWC has long been an event for telecommunications companies to launch their latest innovations, and this year was no different. Telco companies demonstrated how AI is now essential in managing network performance, reducing operational downtime, and driving significant cost savings. The industry consensus is that AI is no longer experimental but a critical component of modern telecommunications. While many of the applications showcased were early-stage pilots and stakeholders are still figuring out what wide-scale, real-time AI means in practice, the ambition to innovate and move forward on adoption is clear.Here are three of the most exciting AI developments that caught our eye in Barcelona:Conversational AIChatbots were probably the key telco application showcased across MWC, with applications ranging from contact centers, in-field repairs, personal assistants transcribing calls, booking taxis and making restaurant reservations, to emergency responders using intelligent assistants to manage critical incidents. The easy-to-use, conversational nature of chatbots makes them an attractive means to deploy AI across functions, as it doesn’t require users to have any prior hands-on machine learning expertise.AI for first respondersEmergency responders often rely on telco partners to access novel, technology-enabled solutions to address their challenges. One such example is the collaboration between telcos and large language model (LLM) companies to deliver emergency-response chatbots. These tailored chatbots integrate various decision-making models, enabling them to quickly parse vast data streams and suggest actionable steps for human operators in real time.This collaboration not only speeds up response times during critical situations but also enhances the overall effectiveness of emergency services, ensuring that support reaches those in need faster.Another interesting example in this field was the Deutsche Telekom drone with an integrated LTE base station, which can be deployed in emergencies to deliver temporary coverage to an affected area or extend the service footprint during sports events and festivals, for example.Enhancing Radio Access Networks (RAN)Telecommunication companies are increasingly turning to advanced applications to manage the growing complexity of their networks and provide high-quality, uninterrupted service for their customers.By leveraging artificial intelligence, these applications can proactively monitor network performance, detect anomalies in real time, and automatically implement corrective measures. This not only enhances network reliability but reduces operational costs and minimizes downtime, paving the way for more efficient, agile, and customer-focused network management.One notable example was the Deutsche Telekom and Google Cloud collaboration: RAN Guardian. Built using Gemini 2.0, this agent analyzes network behavior, identifies performance issues, and takes corrective measures to boost reliability, lower operational costs, and improve customer experience.As telecom networks become more complex, conventional rule-based automation struggles to handle real-time challenges. In contrast, agentic AI employs large language models (LLMs) and sophisticated reasoning frameworks to create intelligent systems capable of independent thought, action, and learning.What’s next in the world of AI?The innovation on show at MWC 2025 confirms that AI is rapidly transitioning from a research topic to a fundamental component of telecom and enterprise operations.  Wide-scale AI adoption is, however, a balancing act between cost, benefit, and risk management.Telcos are global by design, operating in multiple regions with varying business needs and local regulations. Ensuring service continuity and a good return on investment from AI-driven applications while carefully navigating regional laws around data privacy and security is no mean feat.If you want to learn more about incorporating AI into your business operations, we can help.Gcore Everywhere Inference significantly simplifies large-scale AI deployments by providing a simple-to-use serverless inference tool that abstracts the complexity of AI hardware and allows users to deploy and manage AI inference globally with just a few clicks. It enables fully automated, auto-scalable deployment of inference workloads across multiple geographic locations, making it easier to handle fluctuating requirements, thus simplifying deployment and maintenance.Learn more about Gcore Everywhere Inference

Everywhere Inference updates: new AI models and enhanced product documentation

This month, we’re rolling out new features and updates to enhance AI model accessibility, performance, and cost-efficiency for Everywhere Inference. From new model options to updated product documentation, here’s what’s new in February.Expanding the model libraryWe’ve added several powerful models to Gcore Everywhere Inference, providing more options for AI inference and fine-tuning. This includes three DeepSeek R1 options, state-of-the-art open-weight models optimized for various NLP tasks.DeepSeek’s recent rise represents a major shift in AI accessibility and enterprise adoption. Learn more about DeepSeek’s rise and what it means for businesses in our dedicated blog. Or, explore what DeepSeek’s popularity means for Europe.The following new models are available now in our model library:QVQ-72B-Preview: A large-scale language model designed for advanced reasoning and language understanding.DeepSeek-R1-Distill-Qwen-14B: A distilled version of DeepSeek R1, providing a balance between efficiency and performance for language processing tasks.DeepSeek-R1-Distill-Qwen-32B: A more robust distilled model designed for enterprise-scale AI applications requiring high accuracy and inference speed.DeepSeek-R1-Distill-Llama-70B: A distilled version of Llama 70B, offering significant improvements in efficiency while maintaining strong performance in complex NLP tasks.Phi-3.5-MoE-instruct: A high-quality, reasoning-focused model supporting multilingual capabilities with a 128K context length.Phi-4: A 14-billion-parameter language model excelling in mathematics and advanced language processing.Mistral-Small-24B-Instruct-2501: A 24-billion-parameter model optimized for low-latency AI tasks, performing competitively with larger models.These additions give developers more flexibility in selecting the right models for their use cases, whether they require large-scale reasoning, multimodal capabilities, or optimized inference efficiency. The Gcore model library offers numerous popular models available at the click of a button, but you can also bring your own custom model just as easily.Everywhere Inference product documentationTo help you get the most out of Gcore Everywhere Inference, we’ve expanded our product documentation. Whether you’re deploying AI models, fine-tuning performance, or scaling inference workloads, our docs provide in-depth guidance, API references, and best practices for seamless AI deployment.Choose Gcore for intuitive, powerful AI deploymentWith these updates, Gcore Everywhere Inference continues to provide the latest and best in AI inference. If you need speed, efficiency, and flexibility, get in touch. We’d love to explore how we can support and enhance your AI workloads.Get a complimentary AI consultation

How to optimize ROI with intelligent AI deployment

As generative AI evolves, the cost of running AI workloads has become a pressing concern. A significant portion of these costs will come from inference—the process of applying trained AI models to real-world data to generate responses, predictions, or decisions. Unlike training, which occurs periodically, inference happens continuously, handling vast amounts of user queries and data in real-time. This persistent demand makes managing inference costs a critical challenge, as inefficiencies can gradually drive up expenses.Cost considerations for AI inferenceOptimizing AI inference isn’t just about improving performance—it’s also about controlling costs. Several factors influence the total expense of running AI models at scale, from the choice of hardware to deployment strategies. As businesses expand their AI capabilities, they must navigate the financial trade-offs between speed, accuracy, and infrastructure efficiency.Several factors contribute to inference costs:Compute costs: AI inference relies heavily on GPUs and specialized hardware. These resources are expensive, and as demand grows, so do the associated costs of maintaining and scaling them.Latency vs. cost trade-off: Real-time applications like recommendation systems or conversational AI require ultra-fast processing. Achieving low latency often demands premium resources, creating a challenging trade-off between performance and cost.Operational overheads: Managing inference at scale can lead to rising expenses, particularly as query volumes increase. While cloud-based inference platforms offer flexibility and scalability, it’s important to implement cost-control measures to avoid unnecessary overhead. Optimizing workload distribution and leveraging adaptive scaling can help mitigate these costs.Balancing performance, cost, and efficiency in AI deploymentThe AI marketplace is teeming with different options and configurations. This can make critical decisions about inference optimization, like model selection, infrastructure, and operational management, feel overwhelming and easy to get wrong. We recommend these key considerations when navigating the choices available:Selecting the right model sizeAI models range from massive foundational models to smaller, task-specific in-house solutions. While large models excel in complex reasoning and general-purpose tasks, smaller models can deliver cost-efficient, accurate results for specific applications. Finding the right balance often involves:Experimenting during the proof-of-concept (POC) phase to test different model sizes and accuracy levels.Prioritizing smaller models where possible without compromising task performance.Matching compute with task requirementsNot every workload requires the same level of computational power. By matching hardware resources to model and task requirements, businesses can significantly reduce costs while maintaining performance.Optimizing infrastructure for cost-effective inferenceInfrastructure plays a pivotal role in determining inference efficiency. Here are three emerging trends:Leveraging edge inference: Moving inference closer to the data source can minimize latency and reduce reliance on more expensive centralized cloud solutions. This approach can optimize costs and improve regulatory compliance for data-sensitive industries.Repatriating compute: Many businesses are moving away from hyperscalers—large cloud providers like AWS, Google Cloud, and Microsoft Azure—to local, in-country cloud providers for simplified compliance and often lower costs. This shift enables tighter cost control and can mitigate the unpredictable expenses often associated with cloud platforms.Dynamic inference management tools: Advanced monitoring tools help track real-time performance and spending, enabling proactive adjustments to optimize ROI.Building a sustainable AI futureGcore’s solutions are designed to help you achieve the ideal balance between cost, performance, and scalability. Here’s how:Smart workload routing: Gcore’s intelligent routing technology ensures workloads are processed at the most suitable edge location. While proximity to the user is prioritized for lower latency and compliance, this approach can also save cost by keeping inference closer to data sources.Per-minute billing and cost tracking: Gcore’s platform offers unparalleled budget control with granular per-minute billing. This transparency allows businesses to monitor and optimize their spending closely.Adaptive scaling: Gcore’s adaptive scaling capabilities allocate just the right amount of compute power needed for each workload, reducing resource waste without compromising performance.How Gcore enhances AI inference efficiencyAs AI adoption grows, optimizing inference efficiency becomes critical for sustainable deployment. Carefully balancing model size, infrastructure, and operational strategies can significantly enhance your ROI.Gcore’s Everywhere Inference solution provides a reliable framework to achieve this balance, delivering cost-effective, high-performance AI deployment at scale.Explore Everywhere Inference

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.