Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
Under attack?

Products

Solutions

Resources

Partners

Why Gcore

  1. Home
  2. Developers
  3. What is data transmission | Everything you need to know about it

What is data transmission | Everything you need to know about it

  • By Gcore
  • April 4, 2023
  • 14 min read
What is data transmission | Everything you need to know about it

Data transmission is sending and receiving digital or analog data between devices. This can be achieved through different mediums, such as cables, optical fibers, or wireless signals. In our daily lives, data transmission is essential, whether sending and receiving emails, answering phone calls, or watching our favorite TV shows. While in business, video conferencing, sending inquiries to e-commerce sites, and streaming services enable global engagement from one device to another.

However, slow loading times on websites or applications may occur due to data transmission issues such as bandwidth, latency, hardware compatibility, and so much more. These common factors can significantly impact both business operations and user experience. This is where the content delivery networks (CDNs) play such a vital role in data transmission.

With this guide, we will walk you through every aspect of the topic, exploring the intricacies of data transmission and how content delivery networks (CDNs) tackle these issues. Additionally, you will gain insight into how data transmission works, the importance of high-speed data transfer, and how you can utilize CDN on your website.

How does data transmission work?

Data transmission involves at least two or more digital devices communicating over a network, and requires a few key components:

  • Sender. The device that starts the transmission of data.
  • Receiver. The device that receives the data sent by the sender.
  • Message or data. This is the information transmitted from one device to another, including text, images, audio, video, or any other form of content.
  • Medium. The physical path or channel through which data is transmitted, such as an optical cable or wireless transmission.
  • Protocol. A set of rules governing the format, timing, and sequencing of data transmission.

Now, you might be wondering how these elements can work efficiently. Well, there are several ways that data transmission can be carried out. To give you an idea, we can categorize data transmission modes based on three factors.

What are different factors in data transmission based upon?

  1. The direction of information. This indicates how the flow of information is transmitted. There are three main categories—simplex, half-duplex, and full-duplex—which we’ll explore further in the next section.
  2. The level of synchronization. This refers to the degree of syncing between the sender and the receiver. Data transmission modes can be categorized as either synchronous or asynchronous.
  3. The number of bits sent. This number pertains to the bits transmitted concurrently throughout the network. This categorization includes two main types—serial and parallel.

Since several factors are involved, let’s focus on the first one we mentioned. We’ll begin by discussing the different ways we can categorize data transmission based on the direction of information being exchanged. Let’s dive into various modes of data transmission that fall under this factor.

What are the types of data transmission?

When it comes to data transmission, there are various modes based on factors we outlined above. It’s not as simple as just receiving or sending data in one direction or another. Data transmission modes can differ based on these factors.

Here is a closer look at the ways data can be transmitted between parties:

1. Simplex transmission. It’s a mode of communication where the data can only flow in one direction, meaning it’s unidirectional. In this mode, the sender can send data, but they can’t receive it. Similarly, the receiver can only receive data and not send it back. So, it’s a bit like a one-way street, where data flow can only go in one direction.

You may be thinking, “what if the receiver wants to send a message back?” That’s precisely why this mode isn’t as popular as other modes. However, it does have its uses in the business world, where a corresponding reply isn’t necessary. For instance, you may have noticed that radio and TV transmissions, as well as desktop input devices like keyboards and mice, often use the Simplex mode. In these cases, there’s no need for two-way communication between the sender and receiver. If we watch TV or listen to the radio, the simplex transmission sends signals to our devices without needing a response from the sender.

2. Half-duplex transmission. Another type of data transmission mode is known as half-duplex, which allows data to flow in both directions, but only one direction at a time. Unlike simplex mode, which only allows data to be transmitted in one direction, half-duplex allows each station to transmit and receive data. However, each station can only send or receive data at a given time, meaning that when one device sends data, the other can only receive it, and vice versa. It’s similar to a two-lane highway where only one direction of traffic can go at once.

This mode of data transmission is useful when two parties do not need to communicate with each other concurrently. It’s beneficial in detecting errors when there’s a problem with the sender or receiver not receiving or sending data correctly. In such instances, the recipient may need to re-transmit the data.

To illustrate this concept further, consider two people using a walkie-talkie to communicate. They can’t talk simultaneously, so one person must finish speaking before the other can reply. The same applies to internet browsers, where a user sends a request for a website, and the server sends the requested page back to the user. Suppose any errors occur during the transmission process—if this happens, the browser may need to request the server’s data again.

3. Full-duplex transmission. In full-duplex data transmission, information can flow in both directions simultaneously, allowing for two-way communication. Unlike half-duplex, which only allows one direction of data flow at a time, full-duplex enables both stations to transmit and receive data concurrently, making it bidirectional.

The diagram above illustrates how the channel capacity is shared between both endpoints, allowing for simultaneous communication. Full-duplex mode is an ideal choice when two-way communication is required. In contrast, half-duplex mode only allows communication to flow in one direction at a time—as we discussed earlier, much like a walkie-talkie where the sender needs to pause before the recipient can reply.

To better understand full-duplex mode, imagine a phone call between two people where both parties can talk and listen to each other at the same time. Similarly, full-duplex mode enables two stations to communicate in real time, with both endpoints able to send and receive data simultaneously.

Let’s quickly summarize what we’ve learned about transmission modes, their communication direction and channel usage, including the benefits and drawbacks of each mode and the best scenarios to use them. You can refer to the table below for a quick overview.

Transmission modeCommunication (direction and channel usage)Bandwidth consumptionAdvantagesDisadvantagesIdeal for
SimplexUnidirectional (one channel)Maximum bandwidth availableSince data only travels in one direction, there are minimal or no concerns regarding data traffic problemsNo communication between devices, no error checking or retransmissionBroadcasting, TV/radio transmission
Half-duplexBidirectional (alternating, one channel) Lower use of a single bandwidthEnables bidirectional communication and enables optimal utilization of the communication channelSlower communication than full-duplex, limited to one-way at a timeWalkie-talkies, Internet browsers, older LAN technologies
Full-duplexBidirectional (simultaneous, two channels)Utilizes twice as much transmission bandwidthAs well as being the quickest mode of device connectivity, it allows for simultaneous two-way communication in both directionsTwo portions make up the communication channel’s capacity. Data transport also lacks a dedicated pathTelephones, newer LAN technologies, video conferencing

Now that we’ve explored the various modes of data transmission, let’s dive into the second category, which is all about the level of synchronization between the sender and receiver—synchronous and asynchronous transmission.

Synchronous transmission

This is a full-duplex type of transmission that allows data to be transmitted without start/stop bits or any gaps between them, and the sender and receiver are synchronized by the same clock signal. Using this method is a way of sending information in a smooth, continuous stream without any pauses and interruptions.

As you can see in the diagram, this method of transmission sends data in blocks of bits, which arrive at the receiver as a stream of bits. The receiver needs to group the bits correctly to make sense of the message. Next, the receiver counts the bits as they come in and groups them into units of eight bits. Lastly, the receiver keeps listening to the message even if no data is being transmitted, and it receives information at the same rate that the transmitter sends it.

You may be wondering what the use cases for synchronous transmission are. Well, synchronous transmission can be helpful for real-time data transfer in various fields, including computer networking (such as Ethernet and fiber optic communications), and computer systems (such as CPUs and RAM).

Asynchronous transmission

In this type of transmission, the data is sent in a half-duplex manner, with start and stop bits added to the message during transmission. These bits ensure that the data is transmitted accurately from the sender to the receiver. Unlike synchronous transmission, which relies on a clock signal to maintain a steady pace for sending and receiving data, asynchronous transmission doesn’t have this signal. However, this transmission method can still be reliable because the speed of data transfer is negotiated based on the capabilities of the devices involved.

Based on the diagram above, in asynchronous transmission, the start bit is typically set to binary “0,” and the stop bit is set to binary “1.” Additionally, there is a data gap between each character that begins and ends with the start and stop bits. This gap is called a “mark state,” typically represented by a binary “1” or negative voltage.

Asynchronous transmission works well for slower speeds, but data can always be compressed to increase transfer rates. A common example of asynchronous transmission is when data is entered using a computer keyboard.

Below is a quick comparison of synchronous and asynchronous transmission:

DescriptionsSynchronous transmissionAsynchronous transmission
Timing and transmission speedData is transmitted fast in a synchronized manner, with fixed and constant timing intervalsData transmission is slow at irregular and random time intervals
Start/stop bitsNot required, as timing is used for synchronizationStart and stop bits are used to synchronize each character transmission
EfficiencyHigh efficiency, as it uses data blocks of bits without any gap between dataLow efficiency due to wasted time between bytes or characters
DistanceSuitable for long-distance data transferExcellent for short-distance data transmission
CostExpensiveLow-priced
Ideal forVideo conferencing, live streamingKeyboard input, mouse input, serial data transfer

Now that we’ve covered the different levels of synchronization in data transmission, we’ll proceed to the aspect of transmitting data that’s defined by the number of bits sent across the network. This category breaks down into two types: serial and parallel.

Serial transmission

Serial data transmission involves sending data bits one at a time over the transmission channel. This means that the bits are sent sequentially rather than in parallel. To receive data correctly, the sender and receiver must be synchronized. The data stream takes some time to send, but the order of the data bits is sustained, ensuring data integrity. This mode of transmission is ideal for small amounts of data or long-distance transfers, such as data transfer between two computers via serial ports.

Parallel transmission

Parallel data transmission sends multiple data bits at once using parallel channels. It’s like many lanes on a highway where each lane carries different data. Other cables help the sender and receiver communicate. Parallel transmission is useful for transferring large amounts of data quickly, but it works best over short distances. However, if multiple transmission channels are too close, it can affect the quality of the data signal. Additionally, it can be costly because it requires more channels. An example of parallel transmission is how a computer communicates with a printer.

FeatureSerial transmissionParallel transmission
DefinitionOne bit at a time is transmitted over a single communication lineMultiple bits are transmitted simultaneously over multiple communication lines
SpeedRelatively slower due to single-bit transmissionDue to multiple-bit transmission, it is considerably faster
DistanceLong-distance communicationShort-distance communication
CostLow-costExpensive
ComplexitySimple and requires fewer componentsSophisticated, requiring additional components

It’s great to learn about these fascinating aspects of data transmission. However, as regular users, we all know how frustrating it can be when we’re trying to send or receive a message or file and it takes forever to load. With that in mind, let’s dive into the next section of this article and explore how we measure data transfer rates. Since speed is so crucial for transferring data efficiently—especially in e-commerce, media, and our daily communications—understanding transfer rates is fundamental in our comprehension of how data is transmitted.

What is a data transfer rate?

The data transfer rate (DTR) is the speed at which data moves from one location to another. One quick example is when transferring data between two devices, such as two computers on the same LAN network or when moving files from a hard disk to a flash drive. However, the data transfer rate can vary depending on several factors like latency, transmission media, and many others, which we will discuss later. But how do we calculate data transfer rate? Here’s a formula:

Data Transfer Rate (DTR) = Amount of data transmitted / Time (seconds)

where:

  • amount of data is the size of the data being transferred, typically measured in bits or bytes;
  • time is the duration of the data transfer, typically measured in seconds.

The data transfer rate is usually expressed in bits per second (bps), kilobits per second (Kbps), megabits per second (Mbps), or gigabits per second (Gbps), depending on the speed of the transfer.

Let’s put this in practice: Suppose you need to transfer a file that is 10 megabytes (MB) in size and takes 20 seconds to transfer the file. To calculate, let’s use the formula above so we can determine the data transfer rate. Here’s a table to categorize each data:

Amount of dataTime
We will convert 10 megabytes to megabits as we are using megabits per second (Mbps). (Note: 1 byte equals 8 bits.)

10 × 8 = 80 megabits

20 seconds

So, the data transfer rate is:

DTR = 80 MB / 20 seconds = 4 Mbps

Based on this calculation, the data transfer rate for this file transfer is 4 megabits per second (Mbps). To check how fast you can transfer data, you can also look at the speed of your internet service provider by measuring the upload and download speed. One way to do this is by using Speedtest by Gcore, which will help you identify any delays or problems with your connection. Essentially, this test will give you a clear picture of how smoothly your data can be transferred over the internet.

What is the importance of the data transfer rate?

Here are some of the primary examples that indicate how crucial data transfer is for regular users and organizations.

  1. Productivity. Fast data transfer speeds enable effective teamwork and communication between people and groups. With companies and organizations that depend on the rapid sharing of information to finish tasks and meet deadlines, this is especially crucial.
  2. User experience. People have grown accustomed to quick and flawless experiences when utilizing websites, apps, and other online services in the digital age. Customers may lose patience and stop using the service altogether due to frustrating delays brought on by a sluggish data transfer rate.
  3. Edge over competitors. Companies may have an advantage in gaining and keeping clients if they can provide faster data transmission speeds than their competitors. This is especially true for sectors like finance, healthcare, and e-commerce where speed is crucial.
  4. Data backup and recovery. A speedy data transfer rate can make the difference between a quick and easy process and a drawn-out and stressful one when backing up essential data or retrieving lost information.
  5. Media streaming. Streaming services rule the digital sphere of today. A quick data transfer rate is necessary for buffer-free streaming whether watching Netflix movies or listening to music on Spotify. Also, big businesses hold live streaming events where they deliver updates for their newest products or services.

What are the factors that affect data transfer rates?

There are several factors that can affect data transfer rates, including the following:

  1. Network congestion. When a user sends data faster than the network resources can handle, a condition known as network congestion may occur. The data transfer rate is impacted when network resources are used to their maximum capabilities. For instance, imagine you’re at work and all of a sudden you’re having trouble sending a file to a colleague via a shared network because there are too many people using it. This can (and almost certainly will) delay productivity.
  2. Network latency. The time it takes for data to travel from one point to another can also affect transfer rates. High latency connections can result in slower transfer rates because data has to travel farther and may encounter more delays along the way.
  3. Bandwidth. The bandwidth of the connection determines how much data may be sent each second. Data can be transferred more swiftly over a link with more bandwidth than over one with less capacity. An example of bandwidth affecting data transfer rates would be downloading a large file over a slow internet connection versus a fast internet connection.
  4. Type of connection. The type of network connection used for data transfer can also affect transfer rates. For example, wired connections tend to be faster than wireless connections, and fiber optic cables can transmit data at much higher speeds than traditional copper cables.
  5. Limited hardware and software resources. A client or server with insufficient hardware resources (processing power, hard drive, input/output, and RAM) can affect the data transfer rate for the entire network. Using standard TCP processes, a system with insufficient resources can slow down user queries and data transfer rates. Software, like operating systems or web applications, can also affect data transfer rates even if hardware resources are adequate. For instance, a poorly optimized web browser may need help to handle large files, resulting in slower data transfer rates.
  6. Load balancing. Load distribution is a technique used in certain devices to optimize performance and prevent overload. Nonetheless, when a high volume of data packets is involved, these devices may become overloaded or misconfigured, leading to issues such as disconnections, retransmissions, or packet loss.

From the perspective of both users and website owners, it is essential to explore reliable options for data transmission. How can we solve some of these issues that affect data transfers? In this context, we’ll now examine the critical role of a content delivery network (CDN) and its significance in high-speed data transfer.

What is the role of content delivery networks (CDNs) in data transmission?

The main role of a CDN is to improve the speed and reliability of data transfer by minimizing latency and reducing the distance that data has to travel. For instance, if a user requests content from a website, the CDN will automatically direct the request to the nearest server in its network. This helps to reduce the time it takes for the content to reach the user, as the data only needs to travel a short distance. Additionally, CDN servers are optimized for high-speed data transfer, which helps to ensure that content is delivered quickly and efficiently.

If your website is hosted on a server in New York and a user in London wants to access it, their request would have to travel a long distance and result in slow loading times. A CDN is a network of servers distributed globally to deliver content to end-users efficiently. When the user in London requests your website, their request is routed automatically to the closest server, which could be the server in London, ensuring faster loading times.

Here are some key points on how CDN benefits data transmission:

  • Improves transmission of data by reducing latency and increasing speed
  • Optimizes dynamic content delivery by caching content closer to the end-user, which reduces the distance data needs to travel
  • Helps manage and distribute traffic to ensure high-quality user experiences
  • Mitigates against DDoS attacks and other security threats

In addition, CDNs can also improve the reliability of data transfer by providing multiple copies of content across their network of servers. If one server goes down or becomes overloaded, the CDN can automatically redirect traffic to another server that is available and can handle the load. This helps prevent downtime and ensures that content is always available to users. To learn more about content delivery networks, you can check out our post What is a CDN?, where we discuss in detail how CDNs work.

How does Gcore CDN keep your website and application fast and responsive?

At Gcore, we recognize the crucial role of fast loading times for websites, applications, and downloads on the internet. That’s why we strive to make the internet faster and more accessible with our CDN service. Gcore CDN is tailored to provide reliable and speedy content delivery, ensuring a seamless user experience every time. With our commitment to delivering high-quality service, many businesses have placed their trust in us to assist them in accomplishing their online goals efficiently.

Let’s take a look at some common features of Gcore CDN:

  • Low latency worldwide. Your users will experience fast loading times as if your app is always hosted in the same location as they are.
  • Outstanding availability. It protects your server from unexpected traffic surges or DDoS attacks, ensuring that your app is always accessible to your users without any downtime.
  • Smart asset optimization. Our CDN incorporates advanced techniques like Brotli and Gzip compression, along with optimized image delivery, to significantly reduce file sizes and improve loading times, resulting in better user experience and lower bandwidth usage.

Use cases of Gcore CDN

You may be curious about how CDN benefits various categories in the internet realm. With the following use cases, you’ll see how it can enhance the experience of users and benefit business owners by providing the best possible service.

CategoryDescription
Website assetsThis category includes all website-related assets, such as HTML, CSS, JavaScript, and images. By utilizing a CDN, website assets can be delivered faster to users, resulting in quicker page load times and a better user experience.

E-commerce

Speed is crucial with an e-commerce website, and a slow website can lead to lost sales. A CDN can improve website performance by delivering product images and other content quickly to users, resulting in a smoother shopping experience.
WordPress CDNWordPress is one of the most popular content management systems in the world. A CDN can accelerate the delivery of WordPress content, including pages, posts, and images, making your website load faster and perform better.
Gaming CDNWith the growing popularity of online gaming, game publishers and developers need to deliver game content quickly to players. A gaming CDN can accelerate the delivery of game updates, game assets, and other content, resulting in faster load times, lower latency, and a better gaming experience.
Software & app updatesImprove the delivery speed of software and app updates, resulting in faster update times and less strain on your server infrastructure.
Video-on-Demand (VOD)Video-on-demand is becoming increasingly popular, with services like Netflix and Hulu leading the way. A CDN can help deliver VOD content quickly, ensuring users have a seamless experience with minimal buffering.
Live streamingLive streaming events—such as concerts, sports events, and conferences—all require fast delivery to prevent lagging or buffering. A CDN can accelerate the delivery of live streaming content, resulting in an improved user experience.

Website acceleration as a service

At Gcore, we are passionate about making the web faster. Website acceleration as a service is an essential component of modern internet delivery. In today’s quick-paced digital world, users demand faster data transfer and a seamless browsing experience. Gcore CDN offers an effective solution to this challenge by providing optimized content delivery that reduces initial server response time and speeds up webpage loading.

With Gcore CDN, you can accomplish the following:

  • Increased session duration. A 55% improvement in page load time (LCP metric) that delivers a 23% increase in session duration.
  • Lower bounce rate. A 20% reduction in page load time leads to a 9% decrease in bounce rate.
  • Improved conversion rate. A 0.1-second improvement in page load time increases mobile conversion rate by 8-10%.
  • Better SEO. Fast websites provide a better user experience and are more likely to be promoted by search engines.

Conclusion

To sum up, data transmission plays a vital role in today’s digital era, as it facilitates the transfer of information across different devices or locations. However, factors such as latency can cause poor delivery of data, affecting user experience and business performance. This is where content delivery networks (CDNs) like Gcore’s can help.

Gcore’s CDN is specifically designed to optimize data transmission, ensuring high-speed delivery of content to end-users by reducing latency. As a result, businesses can enjoy faster loading times, lower bounce rates, and improved user engagement, leading to better business outcomes. Therefore, implementing a CDN is crucial for companies seeking to enhance their online presence and improve their digital performance. If you are interested in learning more, please feel free to contact our experts—we will be happy to assist you!

Related articles

How do CDNs work?

Picture this: A visitor lands on your website excited to watch a video, buy an item, or explore your content. If your page loads too slowly, they may leave before it even loads completely. Every second matters when it comes to customer retention, engagement, and purchasing patterns.This is where a content delivery network (CDN) comes in, operating in the background to help end users access digital content quickly, securely, and without interruption. In this article, we’ll explain how a CDN works to optimize the delivery of websites, applications, media, and other online content, even during high-traffic spikes and cyberattacks. If you’re new to CDNs, you might want to check out our introductory article first.Key components of a CDNA CDN is a network of interconnected servers that work together to optimize content delivery. These servers communicate to guarantee that data reaches users as quickly and efficiently as possible. The core of a CDN consists of globally distributed edge servers, also known as points of presence (PoPs):Origin server: The central server where website data is stored. Content is distributed from the origin to other servers in the CDN to improve availability and performance.Points of presence (PoPs): A globally distributed network of edge servers. PoPs store cached content—pre-saved copies of web pages, images, videos, and other assets. By serving cached content from the nearest PoP to the user, the CDN reduces the distance data needs to travel, improving load times and minimizing strain on the origin server. The more PoPs a network has, the faster content is served globally.How a CDN delivers contentCDNs rely on edge servers to store content in a cache, enabling faster delivery to end users. The delivery process differs depending on whether the content is already cached or needs to be fetched from the origin server.A cache hit occurs when the requested content is already stored on a CDN’s edge server. Here’s the process:User requests content: When a user visits a website, their device sends a request to load the necessary content.Closest edge server responds: The CDN routes the request to the nearest edge server to the user, minimizing travel time.Content delivered: The edge server delivers the cached content directly to the user. This is faster because:The distance between the user and the server is shorter.The edge server has already optimized the content for delivery.What happens during a cache miss?A cache miss occurs when the requested content is not yet stored on the edge server. In this case, the CDN fetches the content from the origin server and then updates its cache:User requests content: The process begins when a user’s device sends a request to load website content.The closest server responds: As usual, the CDN routes the request to the nearest edge server.Request to the origin server: If the content isn’t cached, the CDN fetches it from the origin server, which houses the original website data. The edge server then delivers it to the user.Content cached on edge servers: After retrieving the content, the edge server stores a copy in its cache. This ensures that future requests for the same content can be delivered quickly without returning to the origin server.Do you need a CDN?Behind every fast, reliable website is a series of split-second processes working to optimize content delivery. A CDN caches content closer to users, balances traffic across multiple servers, and intelligently routes requests to deliver smooth performance. This reduces latency, prevents downtime, and strengthens security—all critical for businesses serving global audiences.Whether you’re running an e-commerce platform, a streaming service, or a high-traffic website, a CDN ensures your content is delivered quickly, securely, and without interruption, no matter where your users are or how much demand your site experiences.Take your website’s performance to the next level with Gcore CDN. Powered by a global network of over 180+ points of presence, our CDN enables lightning-fast content delivery, robust security, and unparalleled reliability. Don’t let slow load times or security risks hold you back. Contact our team today to learn how Gcore can elevate your online presence.Discover Gcore CDN

What is a CDN?

Whether you’re running an e-commerce store, streaming videos, or managing an app, delivering content quickly and reliably is essential to keeping users satisfied. This is where a content delivery network (CDN) comes into play. A CDN is a globally distributed network of servers that work together to deliver content to users quickly, minimizing latency. Instead of relying on a single server, a CDN uses edge servers—called points of presence (PoPs)—to cache or temporarily store copies of your content closer to the user. This optimizes website performance, drastically cuts down on load times, and improves the user experience. Research suggests that a one-second lag in page loading speed can significantly decrease engagement, citing a 7% decline in conversions and an 11% decrease in page visits. CDNs considerably speed up load times by reducing latency through content caching closer to the user. By splitting up your website’s traffic over several servers, CDNs also protect it from online threats. Distributed denial-of-service (DDoS) attacks are lessened by CDNs because they spread traffic among a network of servers, improving security and availability. What Challenges Do CDNs Address?CDNs tackle two key challenges to improve website and application performance: Slow load times: Users sometimes experience frustratingly slow-loading websites and applications. This is because data must travel from a server to the end user’s device, causing latency. CDNs move servers closer to end users, reducing the distance that data has to travel and speeding up load times.  High traffic volumes: High traffic volumes during peak times or cyberattacks can overwhelm your website and lead to latency or site unavailability. Since CDNs distribute traffic across multiple servers, no single server is overwhelmed. This helps prevent crashes and delivers smooth performance for all users.Common Use Cases for CDNsCDNs are vital across a range of industries, providing measurable improvements in content delivery and user experience. E-commerce websites use CDNs to guarantee quick page loading and frictionless shopping experiences, even during periods of high traffic. Speed is crucial for online businesses. A study found that the average cost of downtime for e-commerce websites is around $500,000 per hour. This includes lost sales, operational costs, and long-term damage to brand reputation Streaming services rely on CDNs to deliver high-quality video content while minimizing buffering. Netflix states that its CDN contributes to the daily delivery of over 125 million hours of streaming content, guaranteeing a seamless experience for customers worldwide. Gaming companies use CDNs to lower latency and provide a consistent real-time user experience, especially during live multiplayer matches, where it is essential to preserve an engaging and fair gameplay experience. News outlets and blogs benefit from CDNs by ensuring their content loads quickly for readers around the world, during large-scale traffic surges, especially during major events like elections or breaking news.  The Benefits of a CDNFaster Website PerformanceEvery second counts when delivering content online. Slow websites frustrate users and harm your business. CDNs speed up content delivery by caching data closer to users, reducing page and file load times. Whether you’re delivering static content (such as CSS, HTML or JPG files) or dynamic content (like data generated by user interactions or API calls), a CDN ensures optimal performance regardless of user location. While factors like DNS settings, server configurations, and code optimization all play a role, the physical distance between your origin server and your users is a factor that only a CDN can solve. Increased Availability and ReliabilityDowntime can seriously affect online businesses. Hardware failures, traffic surges, and cyberattacks can reduce your website’s availability, harming your customers’ experience and causing financial or reputational damage. In fact, around 98% of organizations report that just one hour of downtime costs over $100,000. A CDN ensures that your website remains available, fast, and reliable by leveraging essential features such as: Load balancing: This process dynamically distributes traffic across multiple servers to optimize performance and prevent overload.Intelligent failover: Automatically redirects traffic if a server goes offline, ensuring continuity with minimal disruption.Anycast routing: Directs users to the closest or most efficient server, further reducing latency and enhancing response times.Security FeaturesAs cyber threats continue to grow in sophistication and frequency, securing your website or application is more critical than ever. According to recent statistics from Cobalt’s 2024 Cybersecurity Report, weekly attacks worldwide increased by 8% in 2023, while attackers used more sophisticated strategies to exploit vulnerabilities. Strong security measures that not only safeguard your website but also guarantee optimal performance are necessary in light of these evolving threats. CDN security features not only improve website performance but also defend against a wide range of attacks by distributing traffic across multiple servers, which mitigates DDoS attacks and filters out malicious traffic before it reaches your website. These features, from DDoS protection to safeguarding APIs, help maintain uptime, protect sensitive data, and guarantee a seamless user experience. Most modern solutions like Gcore CDN integrate robust security measures into content delivery, such as:SSL/TLS encryption facilitates secure data transmission by encrypting traffic, protecting sensitive information from being intercepted.L3/L4 DDoS protection blocks large-scale cyberattacks designed to flood your network and disrupt services.L7 DDoS protection guards your website from more complex attacks targeting how the website functions, helping it continue to operate smoothly.Web application firewall (WAF) acts as a shield, blocking harmful traffic such as hacking attempts or malicious scripts before they can affect your site.API security protects the communication between your application and other software, preventing unauthorized access or data theft.Bot protection identifies harmful automated traffic (bots), preventing activities like data scraping or login attempts with stolen credentials while allowing useful bots (like search engine crawlers) to function normally. Elevate Your Online Experience With a CDNA CDN is no longer a luxury—it’s a necessity for businesses that want to deliver fast, reliable, and secure online experiences. Whether your goal is to optimize performance, manage high traffic, or protect your site from attacks, a well-configured CDN makes all the difference.Ready to enhance your website’s performance? Our futureproof CDN runs on a global network of over 180 points of presence, so your customers get outstanding performance no matter where in the world they’re located. Get in touch with our team today to learn how our CDN can benefit your business.Discover Gcore CDN

How to Migrate Your Video Files to Gcore Video Streaming

Migrating large volumes of video files from different platforms can be daunting and time-consuming, often discouraging companies from moving to a superior provider. But it doesn’t have to be this way. We’ve created this three-step guide to help you efficiently migrate your video files to Gcore from other popular streaming platforms.Step 1: Get Links to Your VideosFirst, obtain links to your videos and download them. Look for your provider in the list below, or refer to the general SFTP/S3 storage section if applicable. After completing the steps for your provider, go straight to step 2.Google DriveShare the file: Open Google Drive and locate the MP4 file you want to download. Right-click on the file and select “Share.”Get the shareable link: In the sharing settings, click “Get link.” Ensure the link-sharing option is turned on.Set sharing permissions: Adjust the sharing permissions so “Anyone with the link” can view or download the file. Copy the generated link.Amazon S3Edit S3 block public access settings: Go to the S3 management console, select the bucket containing your MP4 file, and edit the Block Public Access settings if necessary.Add a bucket policy: Implement a bucket policy that grants public read access to your files.Get the list of objects: Navigate to the Objects tab, find your MP4 file, and click on the file to obtain the Object URL, which will be your download link.VimeoAccess the video: Log in to your Vimeo account and go to the video you wish to download.Select options: Click on the “Settings” button (gear icon) below the video player.Get video file link: In the settings menu, go to the “Video File” tab, where you can find the download link for your MP4 file.MUXEnable master access: Log in to your MUX account, navigate to the video asset, and enable master access if it’s not already enabled.Retrieve URL to master: Once master access is enabled, the URL to the master file will be available in the video asset details. Copy this URL for downloading the file.DropboxCreate a shareable link: Log in to your Dropbox account and locate the MP4 file you want to share. Click on the “Share” button next to the file.Set access permissions: In the sharing settings, create a link and set the permissions to “Anyone with the link.” Copy the generated link to download the file.General SFTP or S3 StorageAccess storage: Log in to your SFTP or S3 storage service control panel.Manage buckets/directories: Navigate to the appropriate bucket or directory containing your MP4 files.Retrieve download links: Generate HTTP/S links for the files you want to download. You can then use these links to download the files directly.Step 2: Check Availability to DownloadEnsure that your video files are available and ready for download, preventing any interruptions or issues during the migration process.Open HTTP/S link in a browser: Copy the HTTP/S link for the MP4 file and paste it into your browser’s address bar. Press Enter to navigate to the link.Check the video plays correctly in the browser: Verify that the video starts playing once the link is opened. This step ensures that the file is accessible and the link is functioning properly.Right-click to download: While the video is playing, right-click on the video player. Select “Save video as…” from the context menu. Choose a destination on your local disk to save the MP4 file.Step 3: Upload to Gcore Video StreamingNo matter which provider you’re migrating from, you need to upload your videos to Gcore Video Streaming storage. There are three primary methods to upload videos to Gcore storage:Copy from external storage: If your videos are available via public HTTPS URLs, you can directly copy the video files from external storage to Gcore. This method efficiently transfers files without downloading them to your local device first.Upload from a local device: Videos can be uploaded from your local host, backend, browser, or mobile app using the TUS resumable upload protocol. This method is resilient to interruptions, ensuring a smooth upload process by resuming from the point of failure.Batch upload: This method will soon be available to migrate extensive collections of videos, allowing you to transfer vast numbers of video files efficiently.The simplest migration option is to obtain video URLs and copy them to Gcore Video Hosting, eliminating the need to download and reupload videos.Example API Request to Copy Video from External StorageTo copy a video from another server, specify the origin_url attribute in the POST API request. The original video will be downloaded for video hosting on our server. Here is an example of the API request to set a task for copying a video from external storage:curl -L 'https://api.gcore.com/streaming/videos/' \-H 'Content-Type: application/json' \-H 'Authorization: APIKey 1234$0d16599c' \-d '{ "video": { "name": "Gcore Demo", "description": "Video copied from an external S3 Storage", "origin_url": "https://s-ed1.cloud.gcore.lu/demo-video/gcore.mp4" } }Refer to the complete documentation for detailed steps and examples of API requests. The original file must be in MP4 format or one of the following formats: 3g2, 3gp, asf, avi, dif, dv, flv, f4v, m4v, mov, mp4, mpeg, mpg, mts, m2t, m2ts, qt, wmv, vob, mkv, ogv, webm, vob, ogg, mxf, quicktime, x-ms-wmv, mpeg-tts, vnd.dlna.mpeg-tts. Streaming formats like HLS (.m3u8/.ts) and DASH (.mpd/.m4v) are intended for final video distribution and cannot be used as original file formats. Here are examples of good and bad links:Good link: https://demo-files.gvideo.io/gcore.mp4Bad link (chunked HLS format): https://demo-files.gvideo.io/hls/master.m3u8Note: Currently, only one video can be uploaded per request, so transferring your library in batches will require automation.Migrate to Gcore Video Streaming TodayGcore Video Streaming makes video migration easy with support for multiple sources and automatic transcoding. Whether you’re moving files from cloud storage, hosting platforms, or API-based services, Gcore streamlines video administration. Store, process, and distribute videos in various formats, complete with features like subtitles and timeline previews.With seamless migration and automatic transcoding, Gcore ensures your videos are optimized and ready for distribution, saving you time and effort. Simplify your video management and ensure your content is always accessible and in the best format for your audience with Gcore’s robust video streaming solutions.

5 Ways to Improve Website Speed for E-Commerce

In part 1 of this guide, we explained why site speed matters for e-commerce and how you can track your current speed.Now, speed up your page load times with these five techniques.#1 Assess Your Current Site SpeedFirst, check your site’s current performance. Use tools like Google PageSpeed Insights or real user monitoring (RUM) tools. PageSpeed Insights evaluates individual web pages for mobile and desktop performance, providing actionable insights to improve speed and user experience.Here’s an example of how your metrics might look:#2 Adopt Code and Image Optimization TechniquesE-commerce websites often have a huge number of images, videos, and/or animations, which can slow down load times. Since these media are essential, the key is to optimize all heavy components.Compress images and use lazy loading via your website host. Minimize redirects and remove broken links, consulting a technical SEO expert if required. These actions can significantly reduce page weight.#3 Adopt CDNs and Edge ComputingThe majority of online shoppers have purchased from an e-commerce store in another country and an additional 22% plan to in the future. Hosting location impacts speed. The further your servers are physically located from your customers, the higher the latency. So, having servers distributed globally improves your load speed and allows you to deliver great customer experiences, no matter where your customers are located.Imagine that your e-commerce website is hosted on a web server in the US, but you have shoppers from the EU. When shoppers from the US browse your store, they may not experience much latency. But shoppers from Germany will, because of the time it takes their browser to send requests to your US server, wait for the server to process them, and deliver a response. A reliable CDN and edge computing provider caching your website content—images, videos, payment portals and all—at the edge makes for speedy content delivery globally.In addition to shortening the distance between your servers and buyers, CDNs also enable load balancing. Say you’re running a Black Friday sale with traffic surges far beyond your normal quantities. Your CDN provider can distribute the traffic evenly between its network of available servers, preventing any one server from being overworked, thereby improving server response times. So, if your Black Friday surge comes mostly from the New York area, a CDN can push some of that traffic from the New York, NY server to the nearby Manassas, VA and Boston, CT servers. Customers won’t notice a difference since both servers are nearby, but spreading the load means all servers continue to perform optimally.#4 Use Fast Authoritative DNSDNS is like the internet’s phone book, translating human-friendly domain names (like www.example.com) into IP addresses that computers use to find each other. When this translation happens quickly, it reduces the time it takes for a user’s browser to locate your website, leading to faster page load times.#5 Rinse and RepeatSite speed optimization is continuous. The internet changes daily; technology advances and competitors emerge. Don’t get comfortable with your site speed. Continuously track speed scores and make improvements.Website Speed Solutions in One Intuitive PlatformWebsite speed is a game-changer for e-commerce success. A website that loads in under a second is the magic number to boost user experience, slash bounce rates, and skyrocket your e-commerce business’ conversion rates.Stay ahead of your e-commerce competitors by choosing tools and platforms designed with your e-commerce website speed in mind. With 180+ PoPs worldwide and a 200+ Tbps network capacity, Gcore CDN and DNS are ideal speed optimization solutions for global e-commerce sites. Contact us today to discover how we can supercharge your site speed.Explore CDN for e-commerce

What Website Speed Is and Why It Matters for E-commerce Success

Website visitors are more impatient than ever—websites that take longer than three seconds to load lose more than half their visitors. For an e-commerce business, that translates to losing half its potential sales, which is bad news for revenue. In this article, we explain what e-commerce website speed is, how it’s measured, and how you can improve it for better customer retention and higher sales.Why Does Site Speed Matter?Website speed measures the time from when visitors click your link to when they see a fully functioning page. With the surge in e-commerce businesses around the world, buyers have many choices and will quickly abandon slow-loading websites out of frustration. Most customers won’t return to a slow website, and 89% will turn to a faster competitor. Satisfied customers are more likely to recommend your website to others, making high user satisfaction an effective marketing strategy.Just a second—or less—of load time can make the difference between a potential customer purchasing from you or your competitor. Conversion rates drop markedly with every additional second of load time. If your site loads in one second or less, you’re looking at a 3% conversion rate. That almost halves when you add just one second of wait time.That’s not surprising, since churn and bounce rates increase with slower load times, meaning potential buyers either leave your site before interacting and/or don’t return.Page load times also affect search engine optimization (SEO) rankings—your spot on search engine results pages. When buyers search for your products, if you don’t appear at the top, your competitors will—and your customers are more likely to visit their site instead of yours.Evidently, optimizing page load time is a non-negotiable for any e-commerce business.Metrics and Indicators to TrackSpeed can be measured and reflected by either technical or business metrics.Technical IndicatorsGoogle Core Web Vitals are metrics that measure various features contributing to a high-quality page experience. They’re an industry-standard way to measure your technical website load speed.Largest contentful paint (LCP) is the time it takes for the largest content on your site to load. An ideal LCP value is below 2.5 seconds, while above 4 seconds signals a poor page experience.First input delay (FID) is the delay between a user’s interaction (e.g., clicking a button) and the browser’s response. Google considers any FID value below 100 ms good, and above 300 ms poor.Cumulative layout shift (CLS) measures how much your content moves around while loading. Poor CLS can cause users to accidentally click on the wrong buttons.Keep track of the following additional technical metrics:Time to first byte (TTFB) is the time between a browser requesting your webpage and the first byte of data arriving. It often triggers the “reduce initial server response time” message in page speed diagnostics.Time to interactive (TTI) measures the time it takes for your website to become fully interactive. Google considers a TTI of below 5 seconds good, and above 7.3 seconds poor.Round-trip time (RTT) is the time it takes for requests to reach the origin server, be processed, and return to the client.Business MetricsThese metrics give you insights into how your website’s speed impacts sales. Although they’re not a direct speed measurement, speed has a direct impact on them.Conversion rate measures the percentage of your website’s visitors who make a purchase.Engagement time measures how much time customers actively spend on your website, such as browsing products or making a purchase. It’s connected to bounce rate, which is the opposite—how many customers leave your site without engaging at all, often caused by slow loading.Search ranking affects your site’s visibility, traffic, and revenue. Fast load times contribute to better SEO rankings.Explore part 2 of this guide to discover 5 practical tips to speed up your e-commerce website performance.

Improve Your Privacy and Data Security with TLS Encryption on CDN

The web is a public infrastructure: Anyone can use it. Encryption is a must to ensure that communications over this public infrastructure are secure and private. You don’t want anyone to read or modify the data you send or receive, like credit card information when paying for an online service.TLS encryption is a basic yet crucial safeguard that ensures only the client (the user’s device, like a laptop) and server can read your request and response data; third parties are locked out. You can run TLS on a CDN for improved performance, caching, and TLS management. If you want to learn more about TLS and how running it on a CDN can improve your infrastructure, this is the right place to start.What Is TLS Encryption and Why Does It Matter?TLS, transport layer security, encrypts data sent via the web to prevent it from being seen or changed while it’s in transit. For that reason, it’s called encryption in-transit technology. TLS is also commonly called HTTPS when used with HTTP or SSL, as previous versions of the technology were based on it. TLS ensures high encryption performance and forward secrecy. To learn more about encryption, check out our dedicated article.TLS is a vital part of the web because it ensures trust for end users and search engines alike. End users can rest assured that their data—like online banking information or photos of their children—can’t be accessed. Search engines know that information protected by TLS is trustworthy, so they rate it higher than non-protected content.What’s the Connection Between TLS and CDN?A CDN, or content delivery network, helps improve your website’s performance by handling the delivery of your content from its own servers rather than your website’s server. When a CDN uses TLS, it ensures that your content is encrypted as it travels from your server to the CDN and from the CDN to your users.With TLS offloading, your server only needs to encrypt the content for each CDN node, not for every individual user. This reduces the workload on your server.Here’s a simple breakdown of how it works:Your server encrypts the content once and sends it to the CDN.The CDN caches this encrypted content.When a user requests the content, the CDN serves it directly to them, handling all encryption and reducing the need to repeatedly contact your server.Without a CDN, your server would have to encrypt and send content to each user individually, which can slow things down. With a CDN, your server encrypts the content once for the CDN. The CDN then takes over, encrypting and serving the content to all users, speeding up the process and reducing the load on your server.Figure 1: Comparison of how content is served with TLS on the web server (left) vs on CDN (right)Benefits of “Offloading” TLS to a CDNOffloading TLS to a CDN can improve your infrastructure with improved performance, better caching, and simplified TLS management.Increased PerformanceWhen establishing a TLS connection, the client and server must exchange information to negotiate a session key. This exchange involves four messages being sent over the network, as shown in Figure 2. The higher the latency between the two participants, the longer it takes to establish the connection. CDN nodes are typically closer to the client, resulting in lower latency and faster connection establishment.As mentioned above, CDN nodes handle all the encryption tasks. This frees up your server’s resources for other tasks and allows you to simplify its code base.Figure 2: TLS handshakeImproved CachingIf your data is encrypted, the CDN can’t cache it. A single file will look different from the CDN nodes for every new TLS connection, eliminating the CDN benefits (Figure 3). If the CDN holds the certificates, it can negotiate encryption with the clients and collect the files from your server in plaintext. This allows the CDN to cache the content efficiently and serve it faster to users.Figure 3: TLS and CDN caching comparedSimplified TLS ManagementThe CDN takes care of maintenance tasks such as certificate issuing, rotation, and auto-renewal. With the CDN managing TLS, your server’s code base can be simplified, and you no longer need to worry about potential TLS updates in the future.TLS Encryption with Gcore CDNWith the Gcore CDN we don’t just take care of your TLS encryption, but also file compression and DNS lookups. This way, you can unburden your servers from non-functional requirements, which leads to smaller, easier-to-maintain code bases, lower CPU, memory, and traffic impact, and a lower workload for the teams managing those servers.Gcore CDN offers two TLS offloading options:Free Let’s Encrypt certificates with automatic validation, an effective and efficient choice for simple security needsPaid custom certificates, ideal if your TLS setup has more complex requirementsHow to Enable HTTPS with a Free Let’s Encrypt CertificateSetting up HTTPS for your website is quick, easy, and free. First, make sure you have a Gcore CDN resource for your website. If you haven’t created one yet, you can do so in the Gcore Customer Portal by clicking Create CDN resource in the top-right of the window (Figure 4) and following the setup wizard. You’ll be asked to update your DNS records so they point to the Gcore CDN, allowing Gcore to issue the certificates later.Figure 4: Create CDN resourceNext, open the resource settings by selecting your CDN resource from the list in the center (Figure 5).Figure 5: Select the CDN resourceEnable HTTPS in the resource settings, as shown in Figure 6:Select SSL in the left navigationClick the Enable HTTPS checkboxClick Get SSL certificateFigure 6: Get an SSL certificateYour certificate will usually be issued within 30 minutes.Our Commitment to Online SecurityAt Gcore, we’re committed to making the internet secure for everyone. As part of this mission, we offer free CDN and free TLS certificates. Take advantage and protect your resources efficiently for free!Get TLS encryption on Gcore CDN free

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.