Gcore named a Leader in the GigaOm Radar for AI Infrastructure!Get the report
  1. Home
  2. Developers
  3. What Is a Router? | How Does a Router Work?

What Is a Router? | How Does a Router Work?

  • By Gcore
  • July 25, 2023
  • 12 min read
What Is a Router? | How Does a Router Work?

Whether you’re at home or the office, your router plays a critical role in providing essential internet connectivity needed for work, entertainment, and communication. When issues arise or it’s time for an upgrade, it can be daunting to know where to begin. In this article, we’ll help you gain a comprehensive understanding of your router. You will discover how to avoid and resolve frustrating network issues, sluggish internet speeds, and security vulnerabilities, and choose the right router for your needs.

What Is a Router?

A router is a central hub that enables the seamless sharing of resources—like servers, printers, networks, and internet connections—between multiple devices. Routers play a vital role in efficiently managing the transfer of data between devices within a local network and across different networks.

Consider the router you might have in your apartment or home. It connects your devices, like your laptop or smartphone, to the internet, thus allowing you to browse websites, stream videos, and download files. Without it, your devices would not be able to communicate with the broader internet.

In an office environment, a router’s role becomes even more critical. In addition to providing internet access to multiple devices, a router can also facilitate the sharing of resources, such as servers and printers. Imagine you’re at your office desk, and you’ve just finished a report that you need to print. When you hit print on your computer, it’s the router that makes a pathway for your file to travel from your computer to the printer in the network, ensuring that your file reaches the correct destination and is printed out as you intended.

What Is a Router Used For?

A router facilitates data transfer between devices or can forward data to another router. Routers connect devices on a local network, allow them to communicate and transfer data. They enable devices to access the internet or external networks via a single connection point. Routers also allow connection and exchange of data between networks in different geographical locations. For example, a router can connect a regional or remote office to the head office.

How devices physically connect to a router

In addition to data transfer between networks, routers can perform other functions, which are indispensable tools for network management, security, and resource sharing.

  • DHCP server: A router often includes an integrated DHCP server, which can be enabled to automatically assign and manage IP addresses for devices joining the network. This streamlines the process of connecting new devices and ensures efficient allocation of IP addresses within the network.
  • Firewall protection: The majority of routers are equipped with inbuilt firewalls, serving as a robust defense against malware and other threats. These firewalls safeguard the network and its connected devices from unauthorized access and malicious activities.
  • VPN services: Some routers have the capability to support virtual private network (VPN) connections. By enabling VPN services on the router, users can access secure, private connections without the need to install VPN applications on individual devices. This enhances privacy and security for data transmissions across the network.
  • File server: Some advanced routers, such as the Linksys E3200 and E4200, are equipped with a USB port that supports the connection of external drives. This feature effectively transforms the router into a file server, enabling shared access to files and resources within the network or over the internet.

How Does a Router Work?

Routers function as data traffic controllers, directing and forwarding data packets between devices or networks with precision and efficiency. Upon receiving a data packet, the router identifies the destination IP address from its header and consults its routing table—a comprehensive list of paths to various network destinations—to determine the most efficient route for data transfer.

By evaluating factors like speed, reliability, and network congestion, the router ensures that the data packet is forwarded through the best available path. This intelligent decision-making process enables the router to optimize the data transfer process, resulting in swift and accurate delivery to the intended recipient across the interconnected network landscape.

How to Set Up a Router

Setting up a router is typically a straightforward process, especially with the user-friendly apps or web-based dashboards provided by most manufacturers for home or small office routers. However, for larger networks and commercial routers, advanced networking skills may be required. Though specific steps may differ between routers, the following basic steps apply to most models:

  1. Gather information. Determine the default IP address, username, and password for your router. The information often is available on a sticker under the device, in a manual, or on the manufacturer’s website.
  2. Connect the router. Connect the computer’s LAN port to the router’s WAN port using an Ethernet cable. Note that most WAN ports on a router have a different color from the LAN ports.
  3. IP address configuration. If the router’s DHCP server is enabled, it will automatically assign a unique IP address to your computer. Otherwise, manually configure your computer with an IP address on the same network. For example, if the router’s IP is 198.168.1.1, assign your computer 192.168.1.2.
  4. Access router settings. Open a web browser and type the router’s IP address in the address bar. Then, enter the provided username and password. For example, for a Linksys E1200 router, use 192.168.1.1 as the IP address, and “admin” for both the username and password.
  5. Configure router settings. Navigate to the Administration page and modify the LAN IP, admin username, and password. Download and update the router’s firmware for optimal performance.
  6. Wireless network setup. On the Wireless page, customize the name of the wireless network or service set identifier (SSID), and enable encryption such as WPA2-PSK. Ensure you create a strong and unique Wi-Fi password.
  7. Customization. Explore other pages to tailor the router’s settings to your specific requirements, such as port forwarding, quality of service (QoS,) and parental controls.
  8. Save settings. After making the necessary adjustments, save your settings. This may cause the router to restart in order to apply the changes.

Key Components, Features, and Capabilities of Routers

Routers are smart devices, equipped with components including a CPU, memory, storage, and interface ports, enabling them to manage network traffic efficiently and perform logical functions.

  • CPU: The central processing unit executes and processes router commands. Its speed dictates how quickly the router processes commands.
  • Read-only memory (ROM): This storage contains the power-on self-test (POST) script, crucial for router startup or restart. It also contains password recovery software and retains its content even after power loss or restart.
  • RAM: The random-access memory provides temporary storage for the files running on a router. Unlike the ROM, the RAM loses its content when the router loses power or restarts.
  • Flash memory: The memory stores the router’s operating system and other files. Flash memory retains its content even after powering off the router, and allows for easy replacement and updating of files.
  • Ports: Routers feature various ports to connect to different networks and devices. Commonly, routers have at least one WAN port for connecting to a modem or ISP, as well as LAN ports for local area network connections. Wired routers may have multiple LAN ports, while most wireless routers have four ports. Some routers also have dual WAN ports, allowing for backup connections via USB wireless modems or Ethernet in case of failure.
  • Quality of Service (QoS): QoS is a crucial control mechanism that allows users to prioritize critical applications by dedicating adequate bandwidth. Doing so prevents performance degradation resulting from other network activities. For instance, with QoS, you can ensure that video calls or online games maintain stable connections, even when other users engage in bandwidth-intensive tasks like streaming media.
  • Firewall and VPN features: Some routers come with built-in firewall and VPN capabilities, providing an extra layer of protection for devices on the local network. This eliminates the need to install firewall hardware or VPN apps on individual devices, streamlining security measures for the entire network.

Router Operating System

The router operating system (OS) manages and controls router resources and processes. It is loaded during router startup and remains operational until the device is powered down. The OS plays several key roles, including executing programs, controlling input/output operations, allocating resources, and managing file systems. Most commercial and enterprise-grade routers run on the vendor’s proprietary operating systems.

In addition to vendor-specific OS options, there are generic, open-source, and premium router operating systems available. These versatile alternatives can be deployed across several brands of small office/home office (SOHO) Wi-Fi devices or x86 computer-based routers.

Popular router operating systems include:

  • Cisco IOS: This is a monolithic router operating system where all files run on a single image, and the processes share the same memory. However, one drawback of this approach is that if one service fails, it may lead to a system crash, and a bug in one process can impact other processes. Additionally, introducing new features or services may require upgrading the entire IOS image.
  • Jupiter JUNOS: This modular OS is based on FreeBSD, with processes running as separate modules in protected memory spaces. Unlike monolithic OS designs, the modular approach ensures that a bug in one process will not affect the OS. In addition, adding new features can be accomplished without a full upgrade.
  • Cisco IOS XR7: This modular-based OS overcomes the limitations of the monolithic IOS by providing a simple, flexible design that is easy to program. The Cisco IOS XR7 offers faster boot times, consumes less memory, and supports both access-level and core devices.

Router Protocols

Routing protocols serve as the rules and algorithms that routers use to determine the optimal path for reaching a destination. These protocols play a critical role in how routers identify one another and how data reaches its destination across a network. However, the routing protocols themselves do not move the information; instead, they update the routing table to facilitate efficient router communication.

Depending on the specific application and network requirements, a router may implement one or more routing protocols.

  • Routing Information Protocol (RIP): RIP is designed to facilitate information sharing among routers when moving data across a group of LANs. It imposes a maximum limit of 15 hops, which can restrict its effectiveness in supporting larger networks.
  • Interior Gateway Routing Protocol (IGRP): IGRP defines the process of exchanging routing information between gateways or edge routers within an independent network. Other network protocols can then use this information to establish how to route traffic effectively.
  • Open Shortest Path First (OSPF): OSPF is a highly scalable protocol that dynamically calculates the best routes for data packets as they move through interconnected networks. This makes it particularly suitable for large, complex networks.
  • Border Gateway Protocol (BGP): BGP is responsible for routing packets on the internet by facilitating the exchange of information between edge routers. Internet service providers (ISPs) use BGP to share routing information between different networks, ensuring network stability by rapidly switching to alternative network connections if the current one fails before packets reach their destination.

Routing Table: Static and Dynamic Routing

The routing table plays a crucial role in determining the best routes to all destinations within a network. When a router forwards data, it consults the routing table to determine the optimal path to the intended destination. Routing table information can be populated in two ways: through manual entry (static routing) or automatic updates (dynamic routing.)

Static Routing

In static routing, the paths between two routers are manually configured and cannot be updated automatically. If there are changes on the network side, the routing table must be manually updated to reflect the new paths. Static routing offers enhanced security, simplicity in design, and ease of implementation. It is ideal for smaller and less complex networks where changes occur infrequently.

Dynamic Routing

Conversely, dynamic routing automatically updates the routing table, adapting to changes in the network. When a change occurs, like a failure or new connection, the affected routers exchange information, and algorithms are used to calculate new routing paths. The routing table is then updated accordingly. Dynamic routing is particularly suitable for larger and more complex networks where frequent changes occur. However, due to the automatic updates and potential exposure to network changes, dynamic routing is considered to be less secure than static routing.

Router Bands: Single, Dual, and Tri-Band

Wireless routers come in a range of configurations, including single, dual, or tri-band models, each offering unique advantages to meet network needs. The number of bands in a router directly impacts its performance, flexibility, and ability to handle multiple devices simultaneously.

  • Single-band router: This type of router operates on a single 2.4 GHz band and is suitable for smaller networks with fewer than ten devices. While it provides basic connectivity, its limited bandwidth may lead to congestion and interference, especially in areas with numerous Wi-Fi networks.
  • Dual-band router: Dual-band routers offer both a 2.4 GHz and a 5.0 GHz band. The presence of two bands allows for improved performance compared to single-band routers, accommodating more devices and reducing network congestion. Older devices can connect to the 2.4 GHz channel, while newer and faster devices utilize the 5.0 GHz channel, mitigating interference and ensuring smoother data transmission.
  • Tri-band router: A tri-band router boasts one 2.4 GHz band and two 5.0 GHz bands, making it ideal for power users and more demanding network environments. With the additional band, it can support a higher number of devices without compromising network performance or speed. Moreover, users have the option to dedicate a band to specific devices, further minimizing interference and optimizing performance.

Selecting the appropriate type of router depends on factors like the size and location of the network, the number and compatibility of the devices, and the desired level of performance. While tri-band routers provide the highest performance and flexibility, they may be costlier and unnecessary for smaller networks or those with older devices primarily running on the 2.4 GHz band. For most applications, a dual-band router strikes a balance between performance and affordability, catering to the needs of the majority of users.

Main Types of Routers

Different types of routers are each optimized for a particular application and location. Some can only support home or small office networks. High-performance, commercial routers can forward several gigabytes of data per second and are suitable for data centers and other high-traffic applications. Here are some of the most common router types:

  • Core routers: Core routers are designed to deliver maximum bandwidth, connecting multiple routers and switches within large networks. They are used by cloud providers, high-traffic communication service providers, and organizations with extensive networks and multiple locations. Core routers operate within the organization and do not connect to external networks.
  • Edge routers: Positioned at the edge of the network, edge routers act as gateways, connecting the core router to external networks. They are high-bandwidth devices supporting many end-user devices.
  • Mesh router: Mesh routers offer improved wireless coverage by deploying multiple Wi-Fi transmitters throughout an area. They work as a single network, allowing seamless expansion and enhanced coverage.
  • Virtual router: Virtual routers are software-defined and operate via the cloud, providing similar functionality to physical devices. Virtual routers offer low entry costs, easy scalability, flexibility, and reduced local network hardware management, making them ideal for large organizations with complex network requirements.
  • Wired routers: Wired routers use Ethernet or fiber cables to connect devices to the internet, local or external networks. They feature WAN ports and several LAN ports to connect servers, computers, and network switches, expanding the local area network.
  • Wireless routers: Wireless routers use wireless radio signals to connect compatible devices to the local area network or the internet. They typically have WAN and LAN ports, along with a wireless radio, enabling devices to access the internet and local and external networks.
  • Distribution routers: Distribution routers receive data from edge routers through physical cables and distribute it to end users via Wi-Fi connections. The router also comes with additional Ethernet ports to connect additional routers, switches, or user devices physically.
  • VPN router: VPN routers provide hardware-level protection for all devices on the local network, ensuring enhanced privacy and security for data transmission.

Wired vs. Wireless Routers

Wired and wireless routers have distinct characteristics in terms of device connectivity and transfer data. The key differences lie in how devices connect to them and the means through which data is transmitted.

Wired routers are equipped with physical WAN and LAN ports, and devices can connect to them using Ethernet cables. These routers require devices to have a wired connection for data transfer. They are typically more robust and suitable for larger networks, offering reliable and stable connections. Due to their design and capabilities, wired routers are often more expensive and physically larger than their wireless counterparts.

In contrast, wireless routers not only have WAN and LAN ports for wired connections but also include a wireless adapter that allows devices to connect wirelessly via radio signals. This wireless capability provides greater flexibility and convenience, enabling devices to connect without the need for physical cables. Wireless routers are often smaller, more affordable, and commonly used in home and small office networks, where wired connections may not be feasible or convenient.

Most wireless routers are small, cheap, and designed for home and small office networks. They support both wired and wireless connections. Wired routers are large, expensive devices that can support large networks.

Differences Between Routers and Modems

Routers and modems serve distinct functions and play different roles in network connectivity.

Connectivity

A router connects multiple devices within a network, managing the flow of data between different networks or multiple devices in a local area network. On the other hand, a modem connects devices or a local network to external networks, including the Internet.

Internet Access

While a modem connects a single device or local network to the internet or external network, a router allows multiple devices to access the internet using a single modem. A router distributes the internet signal to all connected devices within its network, enabling simultaneous access.

Data Conversion

A modem functions as a data converter, converting digital signals from the router into analog signals before sending them to the internet. Similarly, it converts analog signals from the internet into digital form before forwarding them to the router. In contrast, a router does not provide any conversion; it solely focuses on managing data flow and directing network traffic.

Router Security Vulnerabilities and Solutions

Routers are prime targets for cybercrime due to their significant role in network connectivity and data flow. Default or weak passwords, unpatched firmware, lack of encryption, misconfigurations, and other security flaws in routers are vulnerabilities exploited by criminals to gain unauthorized access to a computer network.

Once compromised, attackers can install malware on computers, reroute traffic, steal data, or disable the router and the entire network. In early 2022, a security researcher exploited vulnerabilities in routers and servers to disconnect North Korea from the internet.

How to Reduce Router Security Risks

Understanding router vulnerabilities helps address them before adding the router to your network. To reduce router security risks and enhance network protections, consider implementing the following measures:

  • Check vendor security. Before adding a router to your network, research the vendor’s track record in addressing security vulnerabilities. Choose a vendor known for promptly releasing updates and patches to address known issues.
  • Use strong passwords. Create strong and unique administrator and Wi-Fi passwords. Change the default IP address, username, and password to further secure router access.
  • Enable strong encryption. Utilize strong encryption to secure data transmitted through the router and prevent unauthorized network access. Choose the highest standard of encryption supported by your wireless router.
  • Update router firmware. Regularly update router firmware to improve security, connectivity, and performance. Manually update the firmware during the initial setup and then enable automatic updates to keep the router up-to-date.
  • Unique SSID. Use a unique, nondescript SSID for your wireless network to avoid identifying your organization and personal information. This prevents attackers from associating you with the network.

Conclusion

Routers play a crucial role in modern networks, enabling seamless communication and resource sharing. Whether for individual users or large organizations, routers provide the backbone for internet connectivity and data transfer. Given the diverse range of routers available, it is essential to carefully consider your specific needs before making a purchase. By understanding the various features, capabilities, and potential associated security risks, you can select the most suitable router for your network requirements and take necessary precautions to minimize security vulnerabilities.

Gcore’s Virtual Private Cloud utilizes virtualized routers to create private networks within our cloud and public-private interconnections with the user’s other infrastructure. You get outstanding connectivity, an isolated and protected network for your servers, and flexible subnet management using private address ranges. Discover the powerful routers that Gcore uses in our blog post.

Get started with VP Cloud for free.

Related articles

What is Infrastructure as a Service? Definition, benefits, and use cases

Infrastructure as a Service (IaaS) is a cloud computing service model that provides virtualized computing resources over the internet, including servers, storage, and networking components.IaaS enables organizations to outsource their entire IT infrastructure to cloud providers, allowing on-demand access and management of resources without investing in physical hardware. This service model operates through virtualization technology, where physical hardware is abstracted into virtual resources that can be provisioned and scaled instantly based on user requirements.The main components of IaaS include virtual machines, storage systems, networking hardware, and management software for provisioning and scaling resources.Leading cloud providers maintain data centers with thousands of physical servers, storage arrays, and networking equipment that are pooled together to create these virtualized resources accessible through web-based interfaces and APIs.IaaS differs from other cloud service models in terms of control and responsibility distribution between providers and users. While IaaS providers maintain and manage the physical infrastructure, users are responsible for installing and managing their own operating systems, applications, and data, offering greater flexibility compared to Platform as a Service (PaaS) and Software as a Service (SaaS) models.This cloud computing approach matters because it allows businesses to access enterprise-grade infrastructure without the capital expenses and maintenance overhead of physical hardware. It also benefits from a pay-as-you-go pricing model that aligns costs directly with resource consumption.What is Infrastructure as a Service (IaaS)?Infrastructure as a Service (IaaS) is a cloud computing service model that provides virtualized computing resources over the internet, including servers, storage, and networking components that organizations can access on demand without owning physical hardware. This model allows companies to outsource their entire IT infrastructure to cloud providers while maintaining control over their operating systems, applications, and data. IaaS operates on a pay-as-you-go pricing structure where users only pay for the resources they consume, making it cost-effective for businesses with variable workloads.According to Precedence Research (2025), the global IaaS market is projected to reach $898.52 billion by 2031, growing at a compound annual growth rate of 26.82% from 2024 to 2034.How does Infrastructure as a Service work?Infrastructure as a Service works by providing virtualized computing resources over the internet on a pay-as-you-go basis, allowing organizations to access servers, storage, and networking without owning physical hardware. Cloud providers maintain data centers with physical infrastructure while delivering these resources as virtual services that users can provision and manage remotely.The process begins when users request computing resources through a web-based control panel or API. The provider's management software automatically allocates virtual machines from their physical server pools, assigns storage space, and configures network connections.Users receive root-level access to their virtual infrastructure, giving them complete control over operating systems, applications, and data. At the same time, the provider handles hardware maintenance, security updates, and physical facility management.IaaS operates through resource pooling, where providers share physical hardware across multiple customers using virtualization technology. This creates isolated virtual environments that scale up or down based on demand. Users pay only for consumed resources like CPU hours, storage gigabytes, and data transfer, making it cost-effective for variable workloads.What are the main components of IaaS?The main components of IaaS refer to the core infrastructure elements that cloud providers deliver as virtualized services over the internet. The main components of IaaS are listed below.Virtual machines: Virtual machines are software-based computers that run on physical servers but act like independent systems. Users can configure them with specific operating systems, CPU power, and memory based on their needs. They provide the computing power for running applications and processing data.Storage systems: IaaS includes various storage options like block storage for databases and file storage for documents and media. These systems can scale up or down automatically based on demand. Users pay only for the storage space they actually use.Networking infrastructure: This includes virtual networks, load balancers, firewalls, and IP addresses that connect resources together. The networking layer ensures secure communication between different components. It also manages traffic distribution and provides internet connectivity.Management interfaces: These are dashboards and APIs that let users control their infrastructure resources remotely. They provide tools for monitoring performance, setting up automated scaling, and managing security settings. Users can provision new resources or shut down unused ones through these interfaces.Security services: IaaS platforms include built-in security features like encryption, access controls, and threat detection. These services protect data both in transit and at rest. They also provide compliance tools to meet industry regulations.Backup and disaster recovery: These components automatically create copies of data and applications to prevent loss. They can restore systems quickly if hardware fails or data gets corrupted. Recovery services often include geographic redundancy across multiple data centers.How does IaaS compare to PaaS and SaaS?IaaS differs from PaaS and SaaS primarily in the level of infrastructure control, management responsibility, and service abstraction. IaaS provides virtualized computing resources like servers, storage, and networking that users manage directly, while PaaS offers a complete development platform with pre-configured runtime environments, and SaaS delivers ready-to-use applications accessible through web browsers.The technical architecture varies significantly across these models. IaaS users install and configure their own operating systems, middleware, and applications on virtual machines, giving them full control over the software stack.PaaS abstracts away infrastructure management by providing pre-built development frameworks, databases, and deployment tools, allowing developers to focus solely on application code. SaaS eliminates all technical management by delivering fully functional applications that users access without any installation or configuration.Management responsibilities shift dramatically between these service models. IaaS customers handle security patches, software updates, scaling decisions, and application monitoring while providers maintain only the physical infrastructure.PaaS splits responsibilities. Providers manage the platform layer, including runtime environments and scaling automation, while users focus on application development and data management. SaaS providers handle all technical operations, leaving users to manage only their data and user accounts.Cost structures and use cases also differ substantially. IaaS works best for organizations needing infrastructure flexibility and custom configurations. It typically costs more due to management overhead but offers maximum control.PaaS targets development teams seeking faster application deployment with moderate costs and reduced complexity. SaaS serves end-users wanting immediate functionality with the lowest total cost of ownership, operating on simple subscription models without technical expertise requirements.What are the key benefits of Infrastructure as a Service?The key benefits of Infrastructure as a Service refer to the advantages organizations gain when using cloud-based virtualized computing resources instead of owning physical hardware. The key benefits of Infrastructure as a Service are listed below.Cost reduction: Organizations eliminate upfront capital expenses for servers, storage, and networking equipment. They pay only for resources they actually use, converting fixed IT costs into variable operational expenses.Rapid scalability: Computing resources can be increased or decreased within minutes based on demand. This flexibility allows businesses to handle traffic spikes without over-provisioning hardware during quiet periods.Faster deployment: New virtual machines and storage can be provisioned in minutes rather than weeks. This speed enables development teams to launch projects quickly and respond to market opportunities.Reduced maintenance burden: Cloud providers handle hardware maintenance, security patches, and infrastructure updates. IT teams can focus on applications and business logic instead of managing physical equipment.Global accessibility: Resources are available from multiple geographic locations through internet connections. Teams can access infrastructure from anywhere, supporting remote work and distributed operations.Disaster recovery: Built-in backup and redundancy features protect against hardware failures and data loss. Many providers offer automated failover systems that maintain service availability during outages.Resource optimization: Organizations can right-size their infrastructure to match actual needs rather than estimating capacity. This precision reduces waste and improves resource efficiency across different workloads.What are common Infrastructure as a Service use cases?Infrastructure as a Service use cases refer to the specific business scenarios and applications where organizations deploy IaaS cloud computing resources to meet their operational needs. The Infrastructure as a Service use cases are listed below.Development and testing environments: Organizations use IaaS to quickly spin up isolated environments for software development and testing without purchasing dedicated hardware. Teams can create multiple test environments that mirror production systems, then destroy them when projects complete.Disaster recovery and backup: Companies deploy IaaS resources as backup infrastructure that activates when primary systems fail. This approach costs less than maintaining duplicate physical data centers while providing reliable failover capabilities.Web hosting and applications: Businesses host websites, web applications, and databases on IaaS platforms to handle traffic spikes and scale resources automatically. E-commerce sites particularly benefit during seasonal peaks when demand increases dramatically.Big data processing: Organizations use IaaS to access powerful computing resources for analyzing large datasets without investing in expensive hardware. Data scientists can provision high-memory instances for machine learning models, then release resources when analysis completes.Seasonal workload management: Companies with fluctuating demand patterns deploy IaaS to handle peak periods without maintaining excess capacity year-round. Tax preparation firms and retail businesses commonly use this approach during busy seasons.Geographic expansion: Businesses use IaaS to establish an IT presence in new markets without building physical infrastructure. Organizations can deploy resources in different regions to serve local customers with better performance and compliance.Legacy system migration: Companies move aging on-premises systems to IaaS platforms to extend their lifespan while planning modernization. This approach reduces maintenance costs and improves reliability without requiring immediate application rewrites.What are Infrastructure as a Service examples?Infrastructure as a Service examples refer to specific cloud computing platforms and services that provide virtualized computing resources over the internet on a pay-as-you-go basis. Examples of Infrastructure as a Service are listed below.Virtual machine services: Virtual machine service providers provide on-demand access to scalable virtual servers with customizable CPU, memory, and storage configurations. Users can deploy and manage their own operating systems and applications while the provider handles the physical hardware maintenance.Block storage solutions: Cloud-based storage services offer persistent, high-performance storage volumes that can be attached to virtual machines. These services provide data redundancy and backup capabilities without requiring physical storage infrastructure investment.Virtual networking platforms: These services deliver software-defined networking capabilities, including virtual private clouds, load balancers, and firewalls. Organizations can create isolated network environments and control traffic routing without managing physical networking equipment.Container hosting services: Cloud platforms that provide managed container orchestration and deployment capabilities for applications packaged in containers. These services handle the underlying infrastructure while giving developers control over application deployment and scaling.Bare metal cloud servers: Physical servers provisioned on-demand through cloud interfaces, offering dedicated hardware resources without virtualization overhead. These bare metal services combine the control of physical servers with the flexibility of cloud provisioning.GPU computing instances: Specialized virtual machines equipped with graphics processing units for high-performance computing tasks like machine learning and scientific simulations. These GPU service providers provide access to expensive GPU hardware without upfront capital investment.Database infrastructure services: Cloud platforms that provide the underlying infrastructure for database deployment while leaving database management to users. These services offer scalable compute and storage resources optimized for database workloads.How to choose the right IaaS providerYou choose the right IaaS provider by evaluating six critical factors: performance requirements, security standards, pricing models, scalability options, support quality, and integration capabilities.First, define your specific performance requirements, including CPU power, memory, storage speed, and network bandwidth. Test different instance types during free trials to measure actual performance against your workloads rather than relying on provider specifications alone.Next, evaluate security and compliance features based on your industry requirements. Check for certifications like SOC 2 and ISO 27001, as well as industry-specific standards such as HIPAA for healthcare or PCI DSS for payment processing.Then, compare pricing models across providers by calculating the total cost of ownership, not just hourly rates. Include costs for data transfer, storage, backup services, and support plans, as these can add 30-50% to your base compute costs.Assess scalability options, including auto-scaling capabilities, geographic availability, and resource limits. Verify that the provider can handle your peak demand periods and offers regions close to your users for optimal performance.Test customer support quality by submitting technical questions during your evaluation period. Check response times, technical expertise level, and availability of phone support versus ticket-only systems.Finally, verify integration capabilities with your existing tools and systems. Ensure the provider offers APIs, monitoring tools, and management interfaces that work with your current DevOps workflow and security tools.Start with a pilot project using 10-20% of your workload to validate performance, costs, and operational fit before committing to a full migration.Gcore Infrastructure as a Service solutionsWhen building modern applications and services, choosing the right infrastructure foundation becomes critical for both performance and cost control. Gcore's Infrastructure as a Service solutions address these challenges with a global network spanning 210+ locations worldwide, delivering consistent performance while maintaining competitive pricing through our pay-as-you-use model. Our platform combines enterprise-grade virtual machines, high-performance storage, and advanced networking capabilities, allowing you to scale resources instantly based on actual demand rather than projected capacity.What sets our approach apart is the integration of edge computing capabilities directly into the infrastructure layer. This reduces latency by up to 85% for end users while eliminating the complexity of managing multiple providers for different geographic regions.Explore how Gcore IaaS can accelerate your infrastructure deployment.Frequently asked questionsWhat's the difference between IaaS and traditional hosting?IaaS provides virtualized computing resources through the cloud with on-demand scaling, while traditional hosting offers fixed physical or virtual servers with limited flexibility. Traditional hosting requires upfront capacity planning and manual scaling, whereas IaaS automatically adjusts resources based on actual usage through pay-as-you-go pricing.Is IaaS suitable for small businesses?Yes. IaaS is suitable for small businesses because it eliminates upfront hardware costs and provides pay-as-you-go pricing that scales with actual usage. Small businesses can access enterprise-level infrastructure without the capital investment or maintenance overhead required for physical servers.What is Infrastructure as a Service in cloud computing?Infrastructure as a Service (IaaS) is a cloud computing model that provides virtualized computing resources like servers, storage, and networking over the internet on a pay-as-you-go basis. Organizations rent these resources instead of buying and maintaining physical hardware, while retaining control over their operating systems and applications.How much does IaaS cost compared to on-premises infrastructure?IaaS typically costs 20-40% less than on-premises infrastructure when factoring in hardware, maintenance, staffing, and facility expenses. Organizations save on upfront capital expenditure and benefit from pay-as-you-go pricing that scales with actual usage.Can I migrate existing applications to IaaS?Yes, you can migrate existing applications to IaaS by moving your software, data, and configurations to cloud-based virtual machines while maintaining the same operating environment. The migration process involves assessment, planning, data transfer, and testing to ensure applications run properly on the new infrastructure.What happens if my IaaS provider experiences an outage?When your IaaS provider experiences an outage, your virtual machines, applications, and data hosted on their infrastructure become temporarily unavailable until service is restored. Most enterprise IaaS providers offer 99.9% uptime guarantees and maintain redundant systems across multiple data centers to minimize outage duration and impact.

What is cloud security? Definition, challenges, and best practices

Cloud security is the discipline of protecting cloud-based infrastructure, applications, and data from internal and external threats, ensuring confidentiality, integrity, and availability of cloud resources. This protection model has become important as organizations increasingly move their operations to cloud environments.Cloud security operates under a shared responsibility model where providers secure the infrastructure while customers secure their deployed applications, data, and access policies. This responsibility distribution varies by service model, with Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) each requiring different levels of customer involvement.The model creates clear boundaries between provider and customer security obligations.Cloud security protects resources and data individually rather than relying on a traditional perimeter defense approach. This protection method uses granular controls like cloud security posture management (CSPM), network segmentation, and encryption to secure specific assets. The approach addresses the distributed nature of cloud computing, where resources exist across multiple locations and services.Organizations face several cloud security challenges, including misconfigurations, account hijacking, data breaches, and insider threats.Cloud security matters because the average cost of a cloud data breach has reached $5 million according to IBM, making effective security controls essential for protecting both financial assets and organizational reputation.What is cloud security?Cloud security is the practice of protecting cloud-based infrastructure, applications, and data from cyber threats through specialized technologies, policies, and controls designed for cloud environments. This protection operates under a shared responsibility model where cloud providers secure the underlying infrastructure while customers protect their applications, data, and access configurations.Cloud security includes identity and access management (IAM), data encryption, continuous monitoring, workload protection, and automated threat detection to address the unique challenges of distributed cloud resources. The approach differs from traditional security by focusing on individual resource protection rather than perimeter defense, as cloud environments require granular controls and real-time visibility across flexible infrastructure.How does cloud security work?Cloud security works by using a multi-layered defense system that protects data, applications, and infrastructure hosted in cloud environments through shared responsibility models, identity controls, and continuous monitoring. Unlike traditional perimeter-based security, cloud security operates on a distributed model where protection is applied at multiple levels across the cloud stack.The foundation of cloud security rests on the shared responsibility model, where cloud providers secure the underlying infrastructure while customers protect their applications, data, and access policies. This division varies by service type - in Infrastructure as a Service (IaaS), customers handle more security responsibilities, including operating systems and network controls. In contrast, Software as a Service (SaaS) shifts most security duties to the provider.Identity and Access Management (IAM) serves as the primary gatekeeper, controlling who can access cloud resources and what actions they can perform.IAM systems use role-based access control (RBAC) and multi-factor authentication (MFA) to verify user identities and enforce least-privilege principles. These controls prevent unauthorized access even if credentials are compromised.Data protection operates through encryption both at rest and in transit, ensuring information remains unreadable to unauthorized parties. Cloud security platforms also employ workload protection agents that monitor running applications for suspicious behavior. At the same time, Security Information and Event Management (SIEM) systems collect and analyze logs from across the cloud environment to detect potential threats.Continuous monitoring addresses the flexible nature of cloud environments, where resources are constantly created, modified, and destroyed.Cloud Security Posture Management (CSPM) tools automatically scan configurations against security best practices, identifying misconfigurations that could expose data.What are the main cloud security challenges?Cloud security challenges refer to the obstacles and risks that organizations face when protecting their cloud-based infrastructure, applications, and data from threats. The main cloud security challenges are listed below.Misconfigurations: According to Zscaler research, improper cloud settings create the most common security vulnerabilities, with 98.6% of organizations having misconfigurations that cause critical risks to data and infrastructure. These include exposed storage buckets, overly permissive access controls, and incorrect network settings.Shared responsibility confusion: Organizations struggle to understand which security tasks belong to the cloud provider versus what their own responsibilities are. This confusion leads to security gaps where critical protections are assumed to be handled by the other party.Identity and access management complexity: Managing user permissions across multiple cloud services and environments becomes difficult as organizations scale. Weak authentication, excessive privileges, and poor access controls create entry points for attackers.Data protection across environments: Securing sensitive data as it moves between on-premises systems, multiple cloud platforms, and edge locations requires consistent encryption and monitoring. Organizations often lack visibility into where their data resides and how it's protected.Compliance and regulatory requirements: Meeting industry standards like GDPR, HIPAA, or SOC 2 becomes more complex in cloud environments where data location and processing methods may change flexibly. Organizations must maintain compliance across multiple jurisdictions and service models.Limited visibility and monitoring: Traditional security tools often can't provide complete visibility into cloud workloads, containers, and serverless functions. This blind spot makes it difficult to detect threats, track user activities, and respond to incidents quickly.Insider threats and privileged access: Cloud environments often grant broad administrative privileges that can be misused by malicious insiders or compromised accounts. The distributed nature of cloud access makes it harder to monitor and control privileged user activities.What are the essential cloud security technologies and tools?Essential cloud security technologies and tools refer to the specialized software, platforms, and systems designed to protect cloud-based infrastructure, applications, and data from cyber threats and operational risks. The essential cloud security technologies and tools are listed below.Identity and access management (IAM): IAM systems control who can access cloud resources and what actions they can perform through role-based permissions and multi-factor authentication. These platforms prevent unauthorized access by requiring users to verify their identity through multiple methods before granting system entry.Cloud security posture management (CSPM): CSPM tools continuously scan cloud environments to identify misconfigurations, compliance violations, and security gaps across multiple cloud platforms. They provide automated remediation suggestions and real-time alerts when security policies are violated or resources are improperly configured.Data encryption services: Encryption technologies protect sensitive information both at rest in storage systems and in transit between cloud services using advanced cryptographic algorithms. These tools mean that even if data is intercepted or accessed without authorization, it remains unreadable without proper decryption keys.Cloud workload protection platforms (CWPP): CWPP solutions monitor and secure applications, containers, and virtual machines running in cloud environments against malware, vulnerabilities, and suspicious activities. They provide real-time threat detection and automated response capabilities specifically designed for flexible cloud workloads.Security information and event management (SIEM): Cloud-based SIEM platforms collect, analyze, and correlate security events from across cloud infrastructure to detect potential threats and compliance violations. These systems use machine learning and behavioral analysis to identify unusual patterns that may indicate security incidents.Cloud access security brokers (CASB): CASB solutions act as intermediaries between users and cloud applications, enforcing security policies and providing visibility into cloud usage across the organization. They monitor data movement, detect risky behaviors, and ensure compliance with regulatory requirements for cloud-based activities.Network security tools: Cloud-native firewalls and network segmentation tools control traffic flow between cloud resources and external networks using intelligent filtering rules. These technologies create secure network boundaries and prevent lateral movement of threats within cloud environments.What are the key benefits of cloud security?The key benefits of cloud security refer to the advantages organizations gain from protecting their cloud-based infrastructure, applications, and data from threats. The key benefits of cloud security are listed below.Cost reduction: Cloud security eliminates the need for expensive on-premises security hardware and reduces staffing requirements. Organizations can access enterprise-grade security tools through subscription models rather than large capital investments.Improved threat detection: Cloud security platforms use machine learning and AI to identify suspicious activities in real-time across distributed environments. These systems can detect anomalies that traditional security tools might miss.Automatic compliance: Cloud security solutions help organizations meet regulatory requirements like GDPR, HIPAA, and SOC 2 through built-in compliance frameworks. Automated reporting and audit trails simplify compliance management and reduce manual oversight.Reduced misconfiguration risks: Cloud security posture management tools automatically scan for misconfigurations and provide remediation guidance.Enhanced data protection: Cloud security provides multiple layers of encryption for data at rest, in transit, and in use. Advanced key management systems ensure that sensitive information remains protected even if other security measures fail.Flexible security coverage: Cloud security solutions automatically scale with business growth without requiring additional infrastructure investments. Organizations can protect new workloads and applications instantly as they use them.Centralized security management: Cloud security platforms provide unified visibility across multiple cloud environments and hybrid infrastructures. Security teams can monitor, manage, and respond to threats from a single dashboard rather than juggling multiple tools.What are the challenges of cloud security?Cloud security challenges refer to the obstacles and risks organizations face when protecting their cloud-based infrastructure, applications, and data from threats. These challenges are listed below.Misconfigurations: Cloud environments are complex, and improper settings create security gaps that attackers can exploit. These errors include exposed storage buckets, overly permissive access controls, and incorrect network settings.Shared responsibility confusion: Organizations often misunderstand which security tasks belong to them versus their cloud provider. This confusion leads to gaps where critical security measures aren't implemented by either party. The division of responsibilities varies between IaaS, PaaS, and SaaS models, adding to the complexity.Identity and access management complexity: As organizations scale, managing user permissions across multiple cloud services and environments becomes difficult. Weak authentication methods and excessive privileges create entry points for unauthorized access. Multi-factor authentication and role-based access controls require careful planning and ongoing maintenance.Data protection across environments: Ensuring data remains encrypted and secure as it moves between on-premises systems and cloud platforms presents ongoing challenges. Organizations must track data location, apply appropriate encryption, and maintain compliance across different jurisdictions. Data residency requirements add another layer of complexity.Visibility and monitoring gaps: Traditional security tools often can't provide complete visibility into cloud environments and workloads. The flexible nature of cloud resources makes it hard to track all assets and their security status. Real-time monitoring becomes critical but technically challenging to use effectively.Compliance and regulatory requirements: Meeting industry standards and regulations in cloud environments requires continuous effort and specialized knowledge. Different regions have varying data protection laws that affect cloud deployments. Organizations must prove compliance while maintaining operational effectiveness.Insider threats and privileged access: Cloud environments often grant broad access to administrators and developers, creating risks from malicious or careless insiders. Monitoring privileged user activities without impacting productivity requires advanced tools and processes. The remote nature of cloud access makes traditional oversight methods less effective.How to implement cloud security best practices?You use cloud security best practices by establishing a complete security framework that covers identity management, data protection, monitoring, and compliance across your cloud environment.First, configure identity and access management (IAM) with role-based access control (RBAC) and multi-factor authentication (MFA). Create specific roles for different job functions and require MFA for all administrative accounts to prevent unauthorized access.Next, encrypt all data both at rest and in transit using industry-standard encryption protocols like AES256.Enable encryption for databases, storage buckets, and communication channels between services to protect sensitive information from interception.Then, use continuous security monitoring with automated threat detection tools. Set up real-time alerts for suspicious activities, failed login attempts, and unusual data access patterns to identify potential security incidents quickly.After that, establish cloud security posture management (CSPM) to scan for misconfigurations automatically. Configure automated remediation for common issues like open security groups, unencrypted storage, and overly permissive access policies.Create network segmentation using virtual private clouds (VPCs) and security groups to isolate different workloads. Limit communication between services to only what's necessary and use zero-trust network principles.Set up regular security audits and compliance monitoring to meet industry standards like SOC 2, HIPAA, or GDPR. Document all security controls and maintain audit trails for regulatory requirements.Finally, develop an incident response plan specifically for cloud environments. Include procedures for isolating compromised resources, preserving forensic evidence, and coordinating with your cloud provider's security team.Start with IAM and encryption as your foundation, then build additional security layers progressively to avoid overwhelming your team while maintaining strong protection.Gcore cloud securityWhen using cloud security measures, the underlying infrastructure becomes just as important as the security tools themselves. Gcore’s cloud security solutions address this need with a global network of 180+ points of presence and 30ms latency, ensuring your security monitoring and threat detection systems perform consistently across all regions. Our edge cloud infrastructure supports real-time security analytics and automated threat response without the performance bottlenecks that can leave your systems vulnerable during critical moments.What sets our approach apart is the combination of security directly into the infrastructure layer, eliminating the complexity of managing separate security vendors while providing enterprise-grade DDoS protection and encrypted data transmission as standard features. This unified approach typically reduces security management overhead by 40-60% compared to multi-vendor solutions, while maintaining the continuous monitoring capabilities.Explore how Gcore's integrated cloud security infrastructure can strengthen your defense plan at gcore.com/cloud.Frequently asked questionsWhat's the difference between cloud security and traditional approaches?Cloud security differs from traditional approaches by protecting distributed resources through shared responsibility models and cloud-native tools, while traditional security relies on perimeter-based defenses around centralized infrastructure. Traditional security assumes a clear network boundary with firewalls and intrusion detection systems protecting internal resources. In contrast, cloud security secures individual workloads, data, and identities across multiple environments without relying on network perimeters.What is cloud security posture management?Cloud security posture management (CSPM) is a set of tools and processes that continuously monitor cloud environments to identify misconfigurations, compliance violations, and security risks across cloud infrastructure. CSPM platforms automatically scan cloud resources, assess security policies, and provide remediation guidance to maintain proper security configurations.How does Zero Trust apply to cloud security?Zero Trust applies to cloud security by treating every user, device, and connection as untrusted and requiring verification before granting access to cloud resources. This approach replaces traditional perimeter-based security with continuous authentication, micro-segmentation, and least-privilege access controls across cloud environments.What compliance standards apply?Cloud security must comply with industry-specific regulations like SOC 2, ISO 27001, GDPR, HIPAA, PCI DSS, and FedRAMP, depending on your business sector and geographic location. Organizations typically need to meet multiple standards simultaneously, with financial services requiring PCI DSS compliance, healthcare needing HIPAA certification, and EU operations mandating GDPR adherence.What happens during a cloud security breach?During a cloud security breach, attackers gain unauthorized access to cloud resources, potentially exposing sensitive data, disrupting services, and causing financial damage averaging $5 million per incident, according to IBM. The breach typically involves exploiting misconfigurations, compromised credentials, or vulnerabilities to access cloud infrastructure, applications, or data stores.

Query your cloud with natural language: A developer’s guide to Gcore MCP

What if you could ask your infrastructure questions and get real answers?With Gcore’s open-source implementation of the Model Context Protocol (MCP), now you can. MCP turns generative AI into an agent that understands your infrastructure, responds to your queries, and takes action when you need it to.In this post, we’ll demo how to use MCP to explore and inspect your Gcore environment just by prompting, to list resources, check audit logs, and generate cost reports. We’ll also walk through a fun bonus use case: provisioning infrastructure and exporting it to Terraform.What is MCP and why do devs love it?Originally developed by Anthropic, the Model Context Protocol (MCP) is an open standard that turns language models into agents that interact with structured tools: APIs, CLIs, or internal systems. Gcore’s implementation makes this protocol real for our customers.With MCP, you can:Ask questions about your infrastructureList, inspect, or filter cloud resourcesView cost data, audit logs, or deployment metadataExport configs to TerraformChain multi-step operations via natural languageGcore MCP removes friction from interacting with your infrastructure. Instead of wiring together scripts or context-switching across dashboards and CLIs, you can just…ask.That means:Faster debugging and auditsMore accessible infra visibilityFewer repetitive setup tasksBetter team collaborationBecause it’s open source, backed by the Gcore Python SDK, you can plug it into other APIs, extend tool definitions, or even create internal agents tailored to your stack. Explore the GitHub repo for yourself.What can you do with it?This isn’t just a cute chatbot. Gcore MCP connects your cloud to real-time insights. Here are some practical prompts you can use right away.Infrastructure inspection“List all VMs running in the Frankfurt region”“Which projects have over 80% GPU utilization?”“Show all volumes not attached to any instance”Audit and cost analysis“Get me the API usage for the last 24 hours”“Which users deployed resources in the last 7 days?”“Give a cost breakdown by region for this month”Security and governance“Show me firewall rules with open ports”“List all active API tokens and their scopes”Experimental automation“Create a secure network in Tokyo, export to Terraform, then delete it”We’ll walk through that last one in the full demo below.Full video demoWatch Gcore’s AI Software Engineer, Algis Dumbris, walk through setting up MCP on your machine and show off some use cases. If you prefer reading, we’ve broken down the process step-by-step below.Step-by-step walkthroughThis section maps to the video and shows exactly how to replicate the workflow locally.1. Install MCP locally (0:00–1:28)We use uv to isolate the environment and pull the project directly from GitHub.curl -Ls https://astral.sh/uv/install.sh | sh uvx add gcore-mcp-server https://github.com/G-Core/gcore-mcp-server Requirements:PythonGcore account + API keyTool config file (from the repo)2. Set up your environment (1:28–2:47)Configure two environment variables:GCORE_API_KEY for authGCORE_TOOLS to define what the agent can access (e.g., regions, instances, costs, etc.)Soon, tool selection will be automatic, but today you can define your toolset in YAML or JSON.3. Run a basic query (3:19–4:11)Prompt:“Find the Gcore region closest to Antalya.”The agent maps this to a regions.list call and returns: IstanbulNo need to dig through docs or write an API request.4. Provision, export, and clean up (4:19–5:32)This one’s powerful if you’re experimenting with CI/CD or infrastructure-as-code.Prompt:“Create a secure network in Tokyo. Export to Terraform. Then clean up.”The agent:Provisions the networkExports it to Terraform formatDestroys the resources afterwardYou get usable .tf output with no manual scripting. Perfect for testing, prototyping, or onboarding.Gcore: always building for developersTry it now:Clone the repoInstall UVX + configure your environmentStart prompting your infrastructureOpen issues, contribute tools, or share your use casesThis is early-stage software, and we’re just getting started. Expect more tools, better UX, and deeper integrations soon.Watch how easy it is to deploy an inference instance with Gcore

Cloud computing: types, deployment models, benefits, and how it works

Cloud computing is a model for enabling on-demand network access to a shared pool of configurable computing resources, such as networks, servers, storage, applications, and services that can be rapidly provisioned and released with minimal management effort or service provider interaction. According to research by Gartner (2024), the global cloud computing market size is projected to reach $1.25 trillion by 2025, reflecting the rapid growth and widespread adoption of these services.The National Institute of Standards and Technology (NIST) defines five core characteristics that distinguish cloud computing from traditional IT infrastructure. These include on-demand self-service, broad network access, resource pooling, rapid elasticity, and measured service.Each characteristic addresses specific business needs while enabling organizations to access computing resources without maintaining physical hardware on-premises.Cloud computing services are organized into three main categories that serve different business requirements and technical needs. Infrastructure as a Service (IaaS) provides basic computing resources, Platform as a Service (PaaS) offers development environments and tools, and Software as a Service (SaaS) delivers complete applications over the internet. Major cloud providers typically guarantee 99.9% or higher uptime in service level agreements to ensure reliable access to these services.Organizations can choose from four primary use models based on their security, compliance, and operational requirements. Public cloud services are offered over the internet to anyone, private clouds are proprietary networks serving limited users, hybrid clouds combine public and private cloud features, and community clouds serve specific groups with shared concerns. Each model provides different levels of control, security, and cost structures.Over 90% of enterprises use some form of cloud services as of 2024, according to Forrester Research (2024), making cloud computing knowledge important for modern business operations. This widespread adoption reflects how cloud computing has become a cornerstone of digital change and competitive advantage across industries.What is cloud computing?Cloud computing is a model that delivers computing resources like servers, storage, databases, and software over the internet on demand, allowing users to access and use these resources without owning or managing the physical infrastructure. Instead of buying and maintaining your own servers, you can rent computing power from cloud providers and scale resources up or down based on your needs.Over 90% of enterprises now use some form of cloud services, with providers typically guaranteeing 99.9% or higher uptime in their service agreements.The three main service models offer different levels of control and management. Infrastructure as a Service (IaaS) provides basic computing resources like virtual machines and storage. Platform as a Service (PaaS) adds development tools and runtime environments, and Software as a Service (SaaS) delivers complete applications that are ready to use. Each model handles different aspects of the technology stack, so you only manage what you need while the provider handles the rest.Cloud use models vary by ownership and access control. Public clouds serve multiple customers over the internet, private clouds operate exclusively for one organization, and hybrid clouds combine both approaches for flexibility. This variety lets organizations choose the right balance of cost, control, and security for their specific needs while maintaining the core benefits of cloud computing's flexible, elastic infrastructure.What are the main types of cloud computing services?The main types of cloud computing services refer to the different service models that provide computing resources over the internet with varying levels of management and control. The main types of cloud computing services are listed below.Infrastructure as a service (IaaS): This model provides basic computing infrastructure, including virtual machines, storage, and networking resources over the internet. Users can install and manage their own operating systems, applications, and development frameworks while the provider handles the physical hardware.Platform as a service (PaaS): This service offers a complete development and use environment in the cloud, including operating systems, programming languages, databases, and web servers. Developers can build, test, and use applications without managing the underlying infrastructure complexity.Software as a service (SaaS): This model delivers fully functional software applications over the internet through a web browser or mobile app. Users access the software on a subscription basis without needing to install, maintain, or update the applications locally.Function as a service (FaaS): Also known as serverless computing, this model allows developers to run individual functions or pieces of code in response to events. The cloud provider automatically manages server provisioning, scaling, and maintenance while charging only for actual compute time used.Database as a service (DBaaS): This service provides managed database solutions in the cloud, handling database administration tasks like backups, updates, and scaling. Organizations can access database functionality without maintaining physical database servers or hiring specialized database administrators.Storage as a service (STaaS): This model offers flexible cloud storage solutions for data backup, archiving, and file sharing needs. Users can store and retrieve data from anywhere with internet access while paying only for the storage space they actually use.What are the different cloud deployment models?Cloud use models refer to the different ways organizations can access and manage cloud computing resources based on ownership, location, and access control. The cloud use models are listed below.Public cloud: Services are delivered over the internet and shared among multiple organizations by third-party providers. Anyone can purchase and use these services on a pay-as-you-go basis, making them cost-effective for businesses without large upfront investments.Private cloud: Computing resources are dedicated to a single organization and can be hosted on-premises or by a third party. This model offers greater control, security, and customization options but requires higher costs and more management overhead.Hybrid cloud: Organizations combine public and private cloud environments, allowing data and applications to move between them as needed. This approach provides flexibility to keep sensitive data in private clouds while using public clouds for less critical workloads.Community cloud: Multiple organizations with similar requirements share cloud infrastructure and costs. Government agencies, healthcare organizations, or financial institutions often use this model to meet specific compliance and security standards.Multi-cloud: Organizations use services from multiple cloud providers to avoid vendor lock-in and improve redundancy. This plan allows businesses to choose the best services from different providers while reducing dependency on any single vendor.How does cloud computing work?Cloud computing works by delivering computing resources like servers, storage, databases, and software over the internet on an on-demand basis. Instead of owning physical hardware, users access these resources through web browsers or applications, while cloud providers manage the underlying infrastructure in data centers worldwide.The system operates through a front-end and back-end architecture. The front end includes your device, web browser, and network connection that you use to access cloud services.The back end consists of servers, storage systems, databases, and applications housed in the provider's data centers. When you request a service, the cloud infrastructure automatically allocates the necessary resources from its shared pool.The technology achieves its flexibility through virtualization, which creates multiple virtual instances from single physical servers. Resource pooling allows providers to serve multiple customers from the same infrastructure, while rapid elasticity automatically scales resources up or down based on demand.This elastic scaling can reduce resource costs by up to 30% compared to fixed infrastructure, according to McKinsey (2024), making cloud computing both flexible and cost-effective for businesses of all sizes.What are the key benefits of cloud computing?The key benefits of cloud computing refer to the advantages organizations and individuals gain from using internet-based computing services instead of traditional on-premises infrastructure. The key benefits of cloud computing are listed below.Cost reduction: Organizations eliminate upfront hardware investments and reduce ongoing maintenance expenses by paying only for resources they actually use. Cloud providers handle infrastructure management, reducing IT staffing costs and operational overhead.Flexibility and elasticity: Computing resources can expand or contract automatically based on demand, ensuring best performance during traffic spikes. This flexibility prevents over-provisioning during quiet periods and under-provisioning during peak usage.Improved accessibility: Users can access applications and data from any device with an internet connection, enabling remote work and global collaboration. This mobility supports modern work patterns and increases productivity across distributed teams.Enhanced reliability: Cloud providers maintain multiple data centers with redundant systems and backup infrastructure to ensure continuous service availability.Automatic updates and maintenance: Software updates, security patches, and system maintenance happen automatically without user intervention. This automation reduces downtime and ensures systems stay current with the latest features and security protections.Disaster recovery: Cloud services include built-in backup and recovery capabilities that protect against data loss from hardware failures or natural disasters. Recovery times are typically faster than traditional backup methods since data exists across multiple locations.Environmental effectiveness: Shared cloud infrastructure uses resources more effectively than individual company data centers, reducing overall energy consumption. Large cloud providers can achieve better energy effectiveness through economies of scale and advanced cooling technologies.What are the drawbacks and challenges of cloud computing?The drawbacks and challenges of cloud computing refer to the potential problems and limitations organizations may face when adopting cloud-based services. They are listed below.Security concerns: Organizations lose direct control over their data when it's stored on third-party servers. Data breaches, unauthorized access, and compliance issues become shared responsibilities between the provider and customer. Sensitive information may be vulnerable to cyber attacks targeting cloud infrastructure.Internet dependency: Cloud services require stable internet connections to function properly. Poor connectivity or outages can completely disrupt business operations and prevent access to critical applications. Remote locations with limited bandwidth face particular challenges accessing cloud resources.Vendor lock-in: Switching between cloud providers can be difficult and expensive due to proprietary technologies and data formats. Organizations may become dependent on specific platforms, limiting their flexibility to negotiate pricing or change services. Migration costs and technical complexity often discourage switching providers.Limited customization: Cloud services offer standardized solutions that may not meet specific business requirements. Organizations can't modify underlying infrastructure or install custom software configurations. This restriction can force businesses to adapt their processes to fit the cloud platform's limitations.Ongoing costs: Monthly subscription fees can accumulate to exceed traditional on-premise infrastructure costs over time. Unexpected usage spikes or data transfer charges can lead to budget overruns. Organizations lose the asset value that comes with owning physical hardware.Performance variability: Shared cloud resources can experience slower performance during peak usage periods. Network latency affects applications requiring real-time processing or frequent data transfers. Organizations can't guarantee consistent performance levels for mission-critical applications.Compliance complexity: Meeting regulatory requirements becomes more challenging when data is stored across multiple locations. Organizations must verify that cloud providers meet industry-specific compliance standards. Audit trails and data governance become shared responsibilities that require careful coordination.Gcore Edge CloudWhen building AI applications that require serious computational power, the infrastructure you choose can make or break your project's success. Whether you're training large language models, running complex inference workloads, or tackling high-performance computing challenges, having access to the latest GPU technology without performance bottlenecks becomes critical.Gcore's AI GPU Cloud Infrastructure addresses these demanding requirements with bare metal NVIDIA H200. H100. A100. L40S, and GB200 GPUs, delivering zero virtualization overhead for maximum performance. The platform's ultra-fast InfiniBand networking and multi-GPU cluster support make it particularly well-suited for distributed training and large-scale AI workloads, starting from just €1.25/hour. Multi-instance GPU (MIG) support also allows you to improve resource allocation and costs for smaller inference tasks.Discover how Gcore's bare metal GPU performance can accelerate your AI training and inference workloads at https://gcore.com/gpu-cloud.Frequently asked questionsPeople often have questions about cloud computing basics, costs, and how it fits their specific needs. These answers cover the key service models, use options, and practical considerations that help clarify what cloud computing can do for your organization.What's the difference between cloud computing and traditional hosting?Cloud computing delivers resources over the internet on demand, while traditional hosting provides fixed server resources at dedicated locations. Cloud offers elastic growth and pay-as-you-go pricing, whereas traditional hosting requires upfront capacity planning and fixed costs regardless of actual usage.What is cloud computing security?Cloud computing security protects data, applications, and infrastructure in cloud environments through shared responsibility models between providers and users. Cloud providers secure the underlying infrastructure while users protect their data, applications, and access controls.What is virtualization in cloud computing?Virtualization in cloud computing creates multiple virtual machines (VMs) on a single physical server using hypervisor software that separates computing resources. This technology allows cloud providers to increase hardware effectiveness and offer flexible, isolated environments to multiple users simultaneously.Is cloud computing secure for business data?Yes, cloud computing is secure for business data when proper security measures are in place, with major providers offering encryption, access controls, and compliance certifications that often exceed what most businesses can achieve on-premises. Cloud service providers typically guarantee 99.9% or higher uptime in service level agreements while maintaining enterprise-grade security standards.How much does cloud computing cost compared to on-premises infrastructure?Cloud computing typically costs 20-40% less than on-premises infrastructure due to shared resources, reduced hardware purchases, and lower maintenance expenses, according to IDC (2024). However, costs vary primarily based on usage patterns, with predictable workloads sometimes being cheaper on-premises while variable workloads benefit more from cloud's pay-as-you-go model.How do I choose between IaaS, PaaS, and SaaS?Choose based on your control needs. IaaS gives you full infrastructure control, PaaS handles infrastructure so you focus on development, and SaaS provides ready-to-use applications with no technical management required.

Pre-configure your dev environment with Gcore VM init scripts

Provisioning new cloud instances can be repetitive and time-consuming if you’re doing everything manually: installing packages, configuring environments, copying SSH keys, and more. With cloud-init, you can automate these tasks and launch development-ready instances from the start.Gcore Edge Cloud VMs support cloud-init out of the box. With a simple YAML script, you can automatically set up a development-ready instance at boot, whether you’re launching a single machine or spinning up a fleet.In this guide, we’ll walk through how to use cloud-init on Gcore Edge Cloud to:Set a passwordInstall packages and system updatesAdd users and SSH keysMount disks and write filesRegister services or install tooling like Docker or Node.jsLet’s get started.What is cloud-init?cloud-init is a widely used tool for customizing cloud instances during the first boot. It reads user-provided configuration data—usually YAML—and uses it to run commands, install packages, and configure the system. In this article, we will focus on Linux-based virtual machines.How to use cloud-init on GcoreFor Gcore Cloud VMs, cloud-init scripts are added during instance creation using the User data field in the UI or API.Step 1: Create a basic scriptStart with a simple YAML script. Here’s one that updates packages and installs htop:#cloud-config package_update: true packages: - htop Step 2: Launch a new VM with your scriptGo to the Gcore Customer Portal, navigate to VMs, and start creating a new instance (or just click here). When you reach the Additional options section, enable the User data option. Then, paste in your YAML cloud-init script.Once the VM boots, it will automatically run the script. This works the same way for all supported Linux distributions available through Gcore.3 real-world examplesLet’s look at three examples of how you can use this.Example 1: Add a password for a specific userThe below script sets the for the default user of the selected operating system:#cloud-config password: <password> chpasswd: {expire: False} ssh_pwauth: True Example 2: Dev environment with Docker and GitThe following script does the following:Installs Docker and GitAdds a new user devuser with sudo privilegesAuthorizes an SSH keyStarts Docker at boot#cloud-config package_update: true packages: - docker.io - git users: - default - name: devuser sudo: ALL=(ALL) NOPASSWD:ALL groups: docker shell: /bin/bash ssh-authorized-keys: - ssh-rsa AAAAB3Nza...your-key-here runcmd: - systemctl enable docker - systemctl start docker Example 3: Install Node.js and clone a repoThis script installs Node.js and clones a GitHub repo to your Gcore VM at launch:#cloud-config packages: - curl runcmd: - curl -fsSL https://deb.nodesource.com/setup_18.x | bash - - apt-get install -y nodejs - git clone https://github.com/example-user/dev-project.git /home/devuser/project Reusing and versioning your scriptsTo avoid reinventing the wheel, keep your cloud-init scripts:In version control (e.g., Git)Templated for different environments (e.g., dev vs staging)Modular so you can reuse base blocks across projectsYou can also use tools like Ansible or Terraform with cloud-init blocks to standardize provisioning across your team or multiple Gcore VM environments.Debugging cloud-initIf your script doesn’t behave as expected, SSH into the instance and check the cloud-init logs:sudo cat /var/log/cloud-init-output.log This file shows each command as it ran and any errors that occurred.Other helpful logs:/var/log/cloud-init.log /var/lib/cloud/instance/user-data.txt Pro tip: Echo commands or write log files in your script to help debug tricky setups—especially useful if you’re automating multi-node workflows across Gcore Cloud.Tips and best practicesIndentation matters! YAML is picky. Use spaces, not tabs.Always start the file with #cloud-config.runcmd is for commands that run at the end of boot.Use write_files to write configs, env variables, or secrets.Cloud-init scripts only run on the first boot. To re-run, you’ll need to manually trigger cloud-init or re-create the VM.Automate it all with GcoreIf you're provisioning manually, you're doing it wrong. Cloud-init lets you treat your VM setup as code: portable, repeatable, and testable. Whether you’re spinning up ephemeral dev boxes or preparing staging environments, Gcore’s support for cloud-init means you can automate it all.For more on managing virtual machines with Gcore, check out our product documentation.Explore Gcore VM product docs

How to cut egress costs and speed up delivery using Gcore CDN and Object Storage

If you’re serving static assets (images, videos, scripts, downloads) from object storage, you’re probably paying more than you need to, and your users may be waiting longer than they should.In this guide, we explain how to front your bucket with Gcore CDN to cache static assets, cut egress bandwidth costs, and get faster TTFB globally. We’ll walk through setup (public or private buckets), signed URL support, cache control best practices, debugging tips, and automation with the Gcore API or Terraform.Why bother?Serving directly from object storage hits your origin for every request and racks up egress charges. With a CDN in front, cached files are served from edge—faster for users, and cheaper for you.Lower TTFB, better UXWhen content is cached at the edge, it doesn’t have to travel across the planet to get to your user. Gcore CDN caches your assets at PoPs close to end users, so requests don’t hit origin unless necessary. Once cached, assets are delivered in a few milliseconds.Lower billsMost object storage providers charge $80–$120 per TB in egress fees. By fronting your storage with a CDN, you only pay egress once per edge location—then it’s all cache hits after that. If you’re using Gcore Storage and Gcore CDN, there’s zero egress fee between the two.Caching isn’t the only way you save. Gcore CDN can also compress eligible file types (like HTML, CSS, JavaScript, and JSON) on the fly, further shrinking bandwidth usage and speeding up file delivery—all without any changes to your storage setup.Less origin traffic and less data to transfer means smaller bills. And your storage bucket doesn’t get slammed under load during traffic spikes.Simple scaling, globallyThe CDN takes the hit, not your bucket. That means fewer rate-limit issues, smoother traffic spikes, and more reliable performance globally. Gcore CDN spans the globe, so you’re good whether your users are in Tokyo, Toronto, or Tel Aviv.Setup guide: Gcore CDN + Gcore Object StorageLet’s walk through configuring Gcore CDN to cache content from a storage bucket. This works with Gcore Object Storage and other S3-compatible services.Step 1: Prep your bucketPublic? Check files are publicly readable (via ACL or bucket policy).Private? Use Gcore’s AWS Signature V4 support—have your access key, secret, region, and bucket name ready.Gcore Object Storage URL format: https://<bucket-name>.<region>.cloud.gcore.lu/<object> Step 2: Create CDN resource (UI or API)In the Gcore Customer Portal:Go to CDN > Create CDN ResourceChoose "Accelerate and protect static assets"Set a CNAME (e.g. cdn.yoursite.com) if you want to use your domainConfigure origin:Public bucket: Choose None for authPrivate bucket: Choose AWS Signature V4, and enter credentialsChoose HTTPS as the origin protocolGcore will assign a *.gcdn.co domain. If you’re using a custom domain, add a CNAME: cdn.yoursite.com CNAME .gcdn.co Here’s how it works via Terraform: resource "gcore_cdn_resource" "cdn" { cname = "cdn.yoursite.com" origin_group_id = gcore_cdn_origingroup.origin.id origin_protocol = "HTTPS" } resource "gcore_cdn_origingroup" "origin" { name = "my-origin-group" origin { source = "mybucket.eu-west.cloud.gcore.lu" enabled = true } } Step 3: Set caching behaviorSet Cache-Control headers in your object metadata: Cache-Control: public, max-age=2592000 Too messy to handle in storage? Override cache logic in Gcore:Force TTLs by path or extensionIgnore or forward query strings in cache keyStrip cookies (if unnecessary for cache decisions)Pro tip: Use versioned file paths (/img/logo.v3.png) to bust cache safely.Secure access with signed URLsWant your assets to be private, but still edge-cacheable? Use Gcore’s Secure Token feature:Enable Secure Token in CDN settingsSet a secret keyGenerate time-limited tokens in your appPython example: import base64, hashlib, time secret = 'your_secret' path = '/videos/demo.mp4' expires = int(time.time()) + 3600 string = f"{expires}{path} {secret}" token = base64.urlsafe_b64encode(hashlib.md5(string.encode()).digest()).decode().strip('=') url = f"https://cdn.yoursite.com{path}?md5={token}&expires={expires}" Signed URLs are verified at the CDN edge. Invalid or expired? Blocked before origin is touched.Optional: Bind the token to an IP to prevent link sharing.Debug and cache tuneUse curl or browser devtools: curl -I https://cdn.yoursite.com/img/logo.png Look for:Cache: HIT or MISSCache-ControlX-Cached-SinceCache not working? Check for the following errors:Origin doesn’t return Cache-ControlCDN override TTL not appliedCache key includes query strings unintentionallyYou can trigger purges from the Gcore Customer Portal or automate them via the API using POST /cdn/purge. Choose one of three ways:Purge all: Clear the entire domain’s cache at once.Purge by URL: Target a specific full path (e.g., /images/logo.png).Purge by pattern: Target a set of files using a wildcard at the end of the pattern (e.g., /videos/*).Monitor and optimize at scaleAfter rollout:Watch origin bandwidth dropCheck hit ratio (aim for >90%)Audit latency (TTFB on HIT vs MISS)Consider logging using Gcore’s CDN logs uploader to analyze cache behavior, top requested paths, or cache churn rates.For maximum savings, combine Gcore Object Storage with Gcore CDN: egress traffic between them is 100% free. That means you can serve cached assets globally without paying a cent in bandwidth fees.Using external storage? You’ll still slash egress costs by caching at the edge and cutting direct origin traffic—but you’ll unlock the biggest savings when you stay inside the Gcore ecosystem.Save money and boost performance with GcoreStill serving assets direct from storage? You’re probably wasting money and compromising performance on the table. Front your bucket with Gcore CDN. Set smart cache headers or use overrides. Enable signed URLs if you need control. Monitor cache HITs and purge when needed. Automate the setup with Terraform. Done.Next steps:Create your CDN resourceUse private object storage with Signature V4Secure your CDN with signed URLsCreate a free CDN resource now

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.