Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
Under attack?

Products

Solutions

Resources

Partners

Why Gcore

  1. Home
  2. Developers
  3. How to Start Live Streaming | Beginners Guide

How to Start Live Streaming | Beginners Guide

  • By Gcore
  • September 29, 2023
  • 9 min read
How to Start Live Streaming | Beginners Guide

Setting up and running live streams can feel overwhelming for both newcomers and experienced creators due to technical complexities, the need for engaging content, the pressure of real-time performance, and the competition for viewer attention in a rapidly growing digital landscape. This guide will enable you to harness the benefits of effective live streaming with insights on selecting the right platform, configuring technical elements, and crafting engaging content.

What Is Live Streaming?

Live streaming involves broadcasting video of events over the internet as they are happening. It allows viewers to watch a video file as it’s being transmitted rather than waiting for the entire file to download before starting to watch. Unlike pre-recorded videos, which are edited and finalized before being shared, live streaming offers an immediate, authentic connection that unfolds in real time.

Live streaming is important because it gives audiences the opportunity to participate actively and engage with the video content, for example with TV shows, gaming sessions, or social media content. Through real-time interactions such as comments, likes, and live polls, audiences shift from passive spectators to involved community members.

Videos can be live-streamed using either on-premises solutions, which are managed on your own physical servers, or using cloud-based solutions hosted and maintained by an external provider.

How to Live Stream in 8 Simple Steps

Here’s a step-by-step guide that will ensure you’re well-prepared to stream engaging live content for your audience.

Step 1: Choose Your Streaming Solution

The first step is perhaps the most difficult, since you have so many options to consider and marketing decisions to make. When choosing a streaming platform, it’s crucial to understand both your target audience and technical requirements. Know where your audience stands in your marketing funnel, the content they interact with, and the platforms they use. Technical decisions like video quality or interface usability should align with audience needs. For instance, if your viewers prioritize high-quality visuals, a 4K-supporting platform becomes essential.

For a more comprehensive strategy, look at your competitors’ technical choices. This includes the platforms they use, video formats, resolutions, and monetization methods like pay-per-view or subscriptions. Conduct a SWOT analysis to align your own technical parameters and audience insights, ensuring you choose a platform that offers the best mix of reach, quality, and security.

Platforms to Consider

Certain audiences and goals may push you in the direction of a specific platform. Here are some popular choices sorted by industry.

  • Mainstream platforms like YouTube Live, Facebook Live, and Twitter Live offer high visibility and support diverse video types.
  • For real-time gaming streams with minimal delay, platforms such as Twitch and YouTube Gaming are ideal, offering features like custom overlays and high frame rates.
  • Mixcloud, Picarto, and Behance cater to artists with lossless audio and high-resolution streaming.
  • LinkedIn Live provides encrypted connections for professionals.
  • E-commerce streamers can benefit from Amazon Live and Instagram Live Shopping, which feature secure payment gateways and advanced inventory management.
  • For a more curated experience, personal websites with embedded video players offer customization and adaptive streaming.
  • Multistreaming allows broadcasting to multiple platforms simultaneously without straining your internet connection. Understanding these technical specifications ensures you select the platform that aligns best with your technical and audience needs for effective engagement.

Features to Consider

Consider which features will enhance the overall streaming experience, such as:

  • A video content management system 
  • Support for various revenue generation avenues
  •  Auto-record to VOD, automatically saving live streams for on-demand viewing later, while retaining monetization opportunities
  • Global payment processing 
  • Go-live notifications, alerts that notify your audience when you start streaming
  • Direct streaming from your branded domain rather than on social media, for more control over branding and audience data.
  • Pre-registration pages and live event countdown features 
  • Integrated live chat and interaction features
  • A landing page builder
  • Live streaming to web and branded OTT apps (over-the-top or direct delivery media services); the ability to broadcast directly to your website and your own specialized media apps.
  • Video editing and embedding tools
  • Advanced live video analytics

Your Business Goals

When it comes to platform selection, ensure that your choice resonates with your business’ financial goals.

ModelDescriptionExample
Subscription-basedBusinesses generate revenue through the monthly or yearly subscription fees viewers pay to access a set of videos.Netflix
Hulu
Disney+
Amazon
Prime
Transaction-based or pay-per-viewBusinesses generate revenue through the rental or purchase fee viewers pay for a particular video they want to watch.YouTube
Google TV
Apple TV
Advertising-basedBusinesses generate revenue through showing ads to viewers when watching video.YouTube
Facebook Watch
Twitch
Factors influencing platform selection for your target audience

Step 2: Gather Essential Components

Building a solid streaming setup involves several key components, and your choice of each will depend on factors like budget and quality requirements.

Cameras and Microphones

Webcams and smartphones might suffice for those new to content creation or operating on a low budget, but advanced professionals and larger organizations will require more specialized cameras and mics. For your audio setup, the microphone signal can either be routed through your camera for a simplified audio-video setup or managed via an external audio interface for better control over sound quality and levels.

Capture Cards

Capture cards help capture the signals from your audio and video sources. They become especially critical when using cameras with HDMI or SDI outputs, which are types of connections that deliver high-quality video but aren’t directly compatible with most computers. A capture card bridges this gap, allowing the high-quality signals to be processed by your computer. For those using software encoders, the card facilitates the essential transfer of the video signal from the camera to the computer for encoding. By contrast, USB cameras and microphones are designed for straightforward computer connectivity, negating the need for a separate capture card.

Lighting

Paying attention to lighting eliminates shadows and highlights facial features, enhancing the overall production value. Content creators can determine the most suitable lighting setup by considering their specific environment, desired mood, and the level of control they need over the lighting conditions, and testing the environment on camera before going live.

A Strong Internet Connection

An uninterrupted and robust internet connection is essential for seamless content delivery. For optimal results, choose a wired connection rather than Wi-Fi. Test your upload speed using Gcore’s speed test and aim for a minimum of 1 Mbps.

Step 3: Create Your Live Channel 

Next, create your live channel on your chosen live streaming platform from Step 1. It will host your content, convert your files into a compatible format, and stream them. Add a unique name and description to your channel, upload a thumbnail image, and set your channel’s privacy settings. There are a number of other settings you can configure, such as your channel’s language, timezone, and monetization settings.

Step 4: Configure Your Video 

Configuring your video settings according to the following best practices ensures that your live stream looks professional and engaging, providing your audience with an optimal viewing experience:

  • Resolution: Start by setting your video resolution to 1920×1080 pixels, commonly referred to as 1080p HD. This resolution strikes a balance between video quality and bandwidth usage. It ensures that your content appears crisp and clear while also being accessible to viewers with varying internet speeds.
  • Frame rate: Choose a frame rate of 30 frames per second (fps.) This standard frame rate provides a smooth and fluid motion for your live stream. It prevents choppiness and maintains the natural flow of movements, making your content more enjoyable to watch.
  • Bitrate: Set your bitrate to a range between 4.5 to 6 Mbps. Your bitrate determines the amount of data transmitted per second in your live stream. Your goal is to find a balance between video quality and bandwidth availability. Adjust the bitrate based on your available upload speed and desired video quality. Higher bit rates result in better video quality but require more bandwidth.

Step 5: Set Up Your Encoder

Setting up your encoder

To get your audio and video ready for online streaming, you’ll need an encoder. This tool translates the incoming signals into a digital format that your chosen streaming platform can understand. You have two main options: software encoders, which rely on your computer’s resources, or hardware encoders, dedicated devices specifically for this task. Many platforms offer a “preview” feature that allows you to ensure that your encoder is correctly configured and see how your stream will appear to viewers, before going live.

Software Encoders

If you’re using a software encoder like OBS Studio, launch the software and access the settings related to video and audio. Configure the resolution, frame rate, and audio settings to match the specifications you set in Step 4.

To connect your software encoder to your streaming platform, log in to your chosen live streaming platform (the one you set up in Step 3) and locate your stream key and stream URL. Enter these credentials into your encoder to establish a connection between your encoder and the streaming platform.

Hardware Encoder

For a hardware encoder, the audio and video data are usually sent to the platform through ports like HDMI or SDI. Access its settings via its dedicated interface.

Step 6: Monetize Your Video 

Monetizing your live video stream allows you to generate revenue from your content. Here’s how to set up video monetization to make the most of your streaming efforts, with the exact steps differing based on the streaming platform you use:

  • Choose your monetization method: Select the monetization strategy that aligns with your goals. Pay-per-view charges viewers a fee to access your stream, subscriptions provide exclusive content for paying subscribers, and advertising generates revenue through ad placements during your stream.
  • Set up paywall or subscription: If you’re opting for pay-per-view or subscription-based monetization, configure the paywall settings or subscription tiers on your streaming platform. Define the pricing structure, access duration, and any exclusive perks for paying viewers.
  • Enable advertising: For ad-based monetization, determine the ad placement options available on your streaming platform. Some platforms may automatically insert ads at specific intervals, while others might require you to integrate ad providers like Google AdSense.
  • Test the monetization setup: Before going live, conduct a test run of your chosen monetization method to ensure that payments are processed correctly, and access is granted or ads are displayed as intended. This helps you avoid any issues during the actual live stream.
  • Promote your monetization strategy: Use social media, email newsletters, and your website to inform your viewers about upcoming paid content, subscriptions, or ad-supported streams.
  • Monitor performance and adapt: Keep a close eye on viewer engagement, feedback, and revenue generation. Monitor which monetization methods are most effective and make adjustments as necessary, based on audience preferences and trends.

Step 7: Add the Video Player to Your Website

Adding the video player to your website for easy uploading

To integrate the video player into your website and enhance accessibility and engagement for your viewers, following these steps.

  1. Acquire embed code: From your chosen live streaming platform’s dashboard, locate the embed code for your live stream. This code contains the necessary information to display the video player on your website.
  2. Access your website’s HTML: Log in to your website’s content management system or access the HTML code of the webpage where you want to embed the video player.
  3. Insert the embed code: Within the HTML code, find the section where you want to place the video player. This could be within a specific page or post. Insert the acquired embed code at the desired location.
  4. Adjust player size and position: Customize the size and position of the video player within the HTML code. You can specify dimensions in pixels or percentages to fit your webpage’s design. Use CSS styles to further refine the appearance and alignment of the player.
  5. Save and publish changes: After inserting and adjusting the embed code, save your changes in the HTML editor. Preview the webpage to ensure the video player displays correctly.
  6. Test and troubleshoot: Load the webpage on different devices and browsers to test the responsiveness and compatibility of the embedded video player. If any issues arise, review your HTML code and CSS styles for errors and inconsistencies.
  7. Ensure mobile responsiveness: Use media queries in your CSS styles to adapt the player’s size and layout for various screen sizes.
  8. Integrate analytics: If your live streaming platform offers analytics, consider integrating tracking codes or scripts into the HTML to gather insights into viewer engagement, play duration, and other metrics.

Step 8: Start Sharing Your Live Stream

To maximize the impact of your live stream, announce the event well in advance. Send out reminder messages that include direct links to the stream. Create anticipation by sharing visually engaging teasers and use live features to reach a wider audience.

Start your live stream on time, actively interact with your viewers, and maintain engagement during the broadcast. Encourage viewers to share the stream and keep a recording for future distribution.

Live Streaming Best Practices

Live streaming offers a wealth of benefits for engaging audiences by bringing a sense of immediacy and authenticity to your content. To effectively make the most of these advantages, here are key practices that can elevate your live streaming experience:

  • Define your niche and audience: Choose a specific content niche to establish a dedicated viewer base that resonates with your content.
  • Craft a clear schedule to promote consistency: Determine the optimal times to go live based on your audience’s preferences. Consistency in your streaming schedule helps viewers anticipate your broadcasts.
  • Enhance viewer interaction with engagement tools: Interactive features like live chat and polls convert passive viewers into active participants, fostering a sense of community.
  • Prioritize video and sound quality: High production values contribute to a professional appearance and provide viewers with a satisfying viewing experience.
  • Expand your reach through multistreaming: By broadcasting your content across different platforms like Twitter, Facebook, and Instagram, you can tap into diverse audiences and maximize your impact.
  • Access real-time analytics for better insights: This information empowers you to adapt your content on the spot for optimal engagement.
  • Archive live streams for later: Use a video content management system to store your live sessions so people can watch them after the event, adding longevity to your content and offering more touchpoints for audience engagement.

Gcore for Live Streaming: The All-in-One Solution

Gcore’s Streaming Platform is an all-in-one solution, providing low-latency live streaming to your viewers. With high-quality content delivery up to 4K/8K, a delay of no more than 4–5 seconds, and the ability to scale to 100+ million viewers, Gcore ensures that viewers can enjoy seamless live streams across the globe. The platform’s adaptability and the added convenience of monetization tools make it an effective solution for both content creation and business development.

Conclusion

Live streaming opens up a fantastic avenue to engage with your audience in a truly meaningful way. Now that you’ve mastered the technical aspects of selecting platforms and equipment, setting up live streams, and adopting best practices, you’re more than ready to start engaging with audiences, sharing expertise, connecting with like-minded individuals, and showcasing products in an unparalleled way. 

Ready to get started? Discover the future of live streaming with Gcore and unlock endless opportunities for engaging and immersive content creation. Start creating live streams with Gcore.

Start Live Streaming with Gcore

Related articles

Bare metal vs. virtual machines: performance, cost, and use case comparison

Choosing the right type of server infrastructure is critical to how your application performs, scales, and fits your budget. For most workloads, the decision comes down to two core options: bare metal servers and virtual machines (VMs). Both can be deployed in the cloud, but they differ significantly in terms of performance, control, scalability, and cost.In this article, we break down the core differences between bare metal and virtual servers, highlight when to choose each, and explain how Gcore can help you deploy the right infrastructure for your needs. If you want to learn about either BM or VMs in detail, we’ve got articles for those: here’s the one for bare metal, and here’s a deep dive into virtual machines.Bare metal vs. virtual machines at a glanceWhen evaluating whether bare metal or virtual machines are right for your company, consider your specific workload requirements, performance priorities, and business objectives. Here’s a quick breakdown to help you decide what works best for you.FactorBare metal serversVirtual machinesPerformanceDedicated resources; ideal for high-performance workloadsShared resources; suitable for moderate or variable workloadsScalabilityOften requires manual scaling; less flexibleHighly elastic; easy to scale up or downCustomizationFull control over hardware, OS, and configurationLimited by hypervisor and provider’s environmentSecurityIsolated by default; no hypervisor layerShared environment with strong isolation protocolsCostHigher upfront cost; dedicated hardwarePay-as-you-go pricing; cost-effective for flexible workloadsBest forHPC, AI/ML, compliance-heavy workloadsStartups, dev/test, fast-scaling applicationsAll about bare metal serversA bare metal server is a single-tenant physical server rented from a cloud provider. Unlike virtual servers, the hardware is not shared with other users, giving you full access to all resources and deeper control over configurations. You get exclusive access and control over the hardware via the cloud provider, which offers the stability and security needed for high-demand applications.The benefits of bare metal serversHere are some of the business advantages of opting for a bare metal server:Maximized performance: Because they are dedicated resources, bare metal servers provide top-tier performance without sharing processing power, memory, or storage with other users. This makes them ideal for resource-intensive applications like high-performance computing (HPC), big data processing, and game hosting.Greater control: Since you have direct access to the hardware, you can customize the server to meet your specific requirements. This is especially important for businesses with complex, specialized needs that require fine-tuned configurations.High security: Bare metal servers offer a higher level of security than their alternatives due to the absence of virtualization. With no shared resources or hypervisor layer, there’s less risk of vulnerabilities that come with multi-tenant environments.Dedicated resources: Because you aren’t sharing the server with other users, all server resources are dedicated to your application so that you consistently get the performance you need.Who should use bare metal servers?Here are examples of instances where bare metal servers are the best option for a business:High-performance computing (HPC)Big data processing and analyticsResource-intensive applications, such as AI/ML workloadsGame and video streaming serversBusinesses requiring enhanced security and complianceAll about virtual machinesA virtual server (or virtual machine) runs on top of a physical server that’s been partitioned by a cloud provider using a hypervisor. This allows multiple VMs to share the same hardware while remaining isolated from each other.Unlike bare metal servers, virtual machines share the underlying hardware with other cloud provider customers. That means you’re using (and paying for) part of one server, providing cost efficiency and flexibility.The benefits of virtual machinesHere are some advantages of using a shared virtual machine:Scalability: Virtual machines are ideal for businesses that need to scale quickly and are starting at a small scale. With cloud-based virtualization, you can adjust your server resources (CPU, memory, storage) on demand to match changing workloads.Cost efficiency: You pay only for the resources you use with VMs, making them cost-effective for companies with fluctuating resource needs, as there is no need to pay for unused capacity.Faster deployment: VMs can be provisioned quickly and easily, which makes them ideal for anyone who wants to deploy new services or applications fast.Who should use virtual machines?VMs are a great fit for the following:Web hosting and application hostingDevelopment and testing environmentsRunning multiple apps with varying demandsStartups and growing businesses requiring scalabilityBusinesses seeking cost-effective, flexible solutionsWhich should you choose?There’s no one-size-fits-all answer. Your choice should depend on the needs of your workload:Choose bare metal if you need dedicated performance, low-latency access to hardware, or tighter control over security and compliance.Choose virtual servers if your priority is flexible scaling, faster deployment, and optimized cost.If your application uses GPU-based inference or AI training, check out our dedicated guide to VM vs. BM for AI workloads.Get started with Gcore BM or VMs todayAt Gcore, we provide both bare metal and virtual machine solutions, offering flexibility, performance, and reliability to meet your business needs. Gcore Bare Metal has the power and reliability needed for demanding workloads, while Gcore Virtual Machines offers customizable configurations, free egress traffic, and flexibility.Compare Gcore BM and VM pricing now

Optimize your workload: a guide to selecting the best virtual machine configuration

Virtual machines (VMs) offer the flexibility, scalability, and cost-efficiency that businesses need to optimize workloads. However, choosing the wrong setup can lead to poor performance, wasted resources, and unnecessary costs.In this guide, we’ll walk you through the essential factors to consider when selecting the best virtual machine configuration for your specific workload needs.﹟1 Understand your workload requirementsThe first step in choosing the right virtual machine configuration is understanding the nature of your workload. Workloads can range from light, everyday tasks to resource-intensive applications. When making your decision, consider the following:Compute-intensive workloads: Applications like video rendering, scientific simulations, and data analysis require a higher number of CPU cores. Opt for VMs with multiple processors or CPUs for smoother performance.Memory-intensive workloads: Databases, big data analytics, and high-performance computing (HPC) jobs often need more RAM. Choose a VM configuration that provides sufficient memory to avoid memory bottlenecks.Storage-intensive workloads: If your workload relies heavily on storage, such as file servers or applications requiring frequent read/write operations, prioritize VM configurations that offer high-speed storage options, such as SSDs or NVMe.I/O-intensive workloads: Applications that require frequent network or disk I/O, such as cloud services and distributed applications, benefit from VMs with high-bandwidth and low-latency network interfaces.﹟2 Consider VM size and scalabilityOnce you understand your workload’s requirements, the next step is to choose the right VM size. VM sizes are typically categorized by the amount of CPU, memory, and storage they offer.Start with a baseline: Select a VM configuration that offers a balanced ratio of CPU, RAM, and storage based on your workload type.Scalability: Choose a VM size that allows you to easily scale up or down as your needs change. Many cloud providers offer auto-scaling capabilities that adjust your VM’s resources based on real-time demand, providing flexibility and cost savings.Overprovisioning vs. underprovisioning: Avoid overprovisioning (allocating excessive resources) unless your workload demands peak capacity at all times, as this can lead to unnecessary costs. Similarly, underprovisioning can affect performance, so finding the right balance is essential.﹟3 Evaluate CPU and memory considerationsThe central processing unit (CPU) and memory (RAM) are the heart of a virtual machine. The configuration of both plays a significant role in performance. Workloads that need high processing power, such as video encoding, machine learning, or simulations, will benefit from VMs with multiple CPU cores. However, be mindful of CPU architecture—look for VMs that offer the latest processors (e.g., Intel Xeon, AMD EPYC) for better performance per core.It’s also important that the VM has enough memory to avoid paging, which occurs when the system uses disk space as virtual memory, significantly slowing down performance. Consider a configuration with more RAM and support for faster memory types like DDR4 for memory-heavy applications.﹟4 Assess storage performance and capacityStorage performance and capacity can significantly impact the performance of your virtual machine, especially for applications requiring large data volumes. Key considerations include:Disk type: For faster read/write operations, opt for solid-state drives (SSDs) over traditional hard disk drives (HDDs). Some cloud providers also offer NVMe storage, which can provide even greater speed for highly demanding workloads.Disk size: Choose the right size based on the amount of data you need to store and process. Over-allocating storage space might seem like a safe bet, but it can also increase costs unnecessarily. You can always resize disks later, so avoid over-allocating them upfront.IOPS and throughput: Some workloads require high input/output operations per second (IOPS). If this is a priority for your workload (e.g., databases), make sure that your VM configuration includes high IOPS storage options.﹟5 Weigh up your network requirementsWhen working with cloud-based VMs, network performance is a critical consideration. High-speed and low-latency networking can make a difference for applications such as online gaming, video conferencing, and real-time analytics.Bandwidth: Check whether the VM configuration offers the necessary bandwidth for your workload. For applications that handle large data transfers, such as cloud backup or file servers, make sure that the network interface provides high throughput.Network latency: Low latency is crucial for applications where real-time performance is key (e.g., trading systems, gaming). Choose VMs with low-latency networking options to minimize delays and improve the user experience.Network isolation and security: Check if your VM configuration provides the necessary network isolation and security features, especially when handling sensitive data or operating in multi-tenant environments.﹟6 Factor in cost considerationsWhile it’s essential that your VM has the right configuration, cost is always an important factor to consider. Cloud providers typically charge based on the resources allocated, so optimizing for cost efficiency can significantly impact your budget.Consider whether a pay-as-you-go or reserved model (which offers discounted rates in exchange for a long-term commitment) fits your usage pattern. The reserved option can provide significant savings if your workload runs continuously. You can also use monitoring tools to track your VM’s performance and resource usage over time. This data will help you make informed decisions about scaling up or down so you’re not paying for unused resources.﹟7 Evaluate security featuresSecurity is a primary concern when selecting a VM configuration, especially for workloads handling sensitive data. Consider the following:Built-in security: Look for VMs that offer integrated security features such as DDoS protection, web application firewall (WAF), and encryption.Compliance: Check that the VM configuration meets industry standards and regulations, such as GDPR, ISO 27001, and PCI DSS.Network security: Evaluate the VM's network isolation capabilities and the availability of cloud firewalls to manage incoming and outgoing traffic.﹟8 Consider geographic locationThe geographic location of your VM can impact latency and compliance. Therefore, it’s a good idea to choose VM locations that are geographically close to your end users to minimize latency and improve performance. In addition, it’s essential to select VM locations that comply with local data sovereignty laws and regulations.﹟9 Assess backup and recovery optionsBackup and recovery are critical for maintaining data integrity and availability. Look for VMs that offer automated backup solutions so that data is regularly saved. You should also evaluate disaster recovery capabilities, including the ability to quickly restore data and applications in case of failure.﹟10 Test and iterateFinally, once you've chosen a VM configuration, testing its performance under real-world conditions is essential. Most cloud providers offer performance monitoring tools that allow you to assess how well your VM is meeting your workload requirements.If you notice any performance bottlenecks, be prepared to adjust the configuration. This could involve increasing CPU cores, adding more memory, or upgrading storage. Regular testing and fine-tuning means that your VM is always optimized.Choosing a virtual machine that suits your requirementsSelecting the best virtual machine configuration is a key step toward optimizing your workloads efficiently, cost-effectively, and without unnecessary performance bottlenecks. By understanding your workload’s needs, considering factors like CPU, memory, storage, and network performance, and continuously monitoring resource usage, you can make informed decisions that lead to better outcomes and savings.Whether you're running a small application or large-scale enterprise software, the right VM configuration can significantly improve performance and cost. Gcore offers a wide range of virtual machine options that can meet your unique requirements. Our virtual machines are designed to meet diverse workload requirements, providing dedicated vCPUs, high-speed storage, and low-latency networking across 30+ global regions. You can scale compute resources on demand, benefit from free egress traffic, and enjoy flexible pricing models by paying only for the resources in use, maximizing the value of your cloud investments.Contact us to discuss your VM needs

11 simple tips for securing your APIs

A vast 84% of organizations have experienced API security incidents in the past year. APIs (application programming interfaces) are the backbone of modern technology, allowing seamless interaction between diverse software platforms. However, this increased connectivity comes with a downside: a higher risk of security breaches, which can include injection attacks, credential stuffing, and L7 DDoS attacks, as well as the ever-growing threat of AI-based attacks.Fortunately, developers and IT teams can implement DIY API protection. Mitigating vulnerabilities involves using secure coding techniques, conducting thorough testing, and applying strong security protocols and frameworks. Alternatively, you can simply use a WAAP (web application and API protection) solution for specialized, one-click, robust API protection.This article explains 11 practical tips that can help protect your APIs from security threats and hacking attempts, with examples of commands and sample outputs to provide API security.#1 Implement authentication and authorizationUse robust authentication mechanisms to verify user identity and authorization strategies like OAuth 2.0 to manage access to resources. Using OAuth 2.0, you can set up a token-based authentication system where clients request access tokens using credentials. # Requesting an access token curl -X POST https://yourapi.com/oauth/token \ -d "grant_type=client_credentials" \ -d "client_id=your_client_id" \ -d "client_secret=your_client_secret" Sample output: { "access_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9...", "token_type": "bearer", "expires_in": 3600 } #2 Secure communication with HTTPSEncrypting data in transit using HTTPS can help prevent eavesdropping and man-in-the-middle attacks. Enabling HTTPS may involve configuring your web server with SSL/TLS certificates, such as Let’s Encrypt with nginx. sudo certbot --nginx -d yourapi.com #3 Validate and sanitize inputValidating and sanitizing all user inputs protects against injection and other attacks. For a Node.js API, use express-validator middleware to validate incoming data. app.post('/api/user', [ body('email').isEmail(), body('password').isLength({ min: 5 }) ], (req, res) => { const errors = validationResult(req); if (!errors.isEmpty()) { return res.status(400).json({ errors: errors.array() }); } // Proceed with user registration }); #4 Use rate limitingLimit the number of requests a client can make within a specified time frame to prevent abuse. The express-rate-limit library implements rate limiting in Express.js. const rateLimit = require('express-rate-limit'); const apiLimiter = rateLimit({ windowMs: 15 * 60 * 1000, // 15 minutes max: 100 }); app.use('/api/', apiLimiter); #5 Undertake regular security auditsRegularly audit your API and its dependencies for vulnerabilities. Runnpm auditin your Node.js project to detect known vulnerabilities in your dependencies.  npm audit Sample output: found 0 vulnerabilities in 1050 scanned packages #6 Implement access controlsImplement configurations so that users can only access resources they are authorized to view or edit, typically through roles or permissions. The two more common systems are Role-Based Access Control (RBAC) and Attribute-Based Access Control (ABAC) for a more granular approach.You might also consider applying zero-trust security measures such as the principle of least privilege (PoLP), which gives users the minimal permissions necessary to perform their tasks. Multi-factor authentication (MFA) adds an extra layer of security beyond usernames and passwords.#7 Monitor and log activityMaintain comprehensive logs of API activity with a focus on both performance and security. By treating logging as a critical security measure—not just an operational tool—organizations can gain deeper visibility into potential threats, detect anomalies more effectively, and accelerate incident response.#8 Keep dependencies up-to-dateRegularly update all libraries, frameworks, and other dependencies to mitigate known vulnerabilities. For a Node.js project, updating all dependencies to their latest versions is vital. npm update #9 Secure API keysIf your API uses keys for access, we recommend that you make sure that they are securely stored and managed. Modern systems often utilize dynamic key generation techniques, leveraging algorithms to automatically produce unique and unpredictable keys. This approach enhances security by reducing the risk of brute-force attacks and improving efficiency.#10 Conduct penetration testingRegularly test your API with penetration testing to identify and fix security vulnerabilities. By simulating real-world attack scenarios, your organizations can systematically identify vulnerabilities within various API components. This proactive approach enables the timely mitigation of security risks, reducing the likelihood of discovering such issues through post-incident reports and enhancing overall cybersecurity resilience.#11 Simply implement WAAPIn addition to taking the above steps to secure your APIs, a WAAP (web application and API protection) solution can defend your system against known and unknown threats by consistently monitoring, detecting, and mitigating risks. With advanced algorithms and machine learning, WAAP safeguards your system from attacks like SQL injection, DDoS, and bot traffic, which can compromise the integrity of your APIs.Take your API protection to the next levelThese steps will help protect your APIs against common threats—but security is never one-and-done. Regular reviews and updates are essential to stay ahead of evolving vulnerabilities. To keep on top of the latest trends, we encourage you to read more of our top cybersecurity tips or download our ultimate guide to WAAP.Implementing specialized cybersecurity solutions such as WAAP, which combines web application firewall (WAF), bot management, Layer 7 DDoS protection, and API security, is the best way to protect your assets. Designed to tackle the complex challenges of API threats in the age of AI, Gcore WAAP is an advanced solution that keeps you ahead of security threats.Discover why WAAP is a non-negotiable with our free ebook

What are zero-day attacks? Risks, prevention tips, and new trends

Zero-day attack is a term for any attack that targets a vulnerability in software or hardware that has yet to be discovered by the vendor or developer. The term “zero-day” stems from the idea that the developer has had zero days to address or patch the vulnerability before it is exploited.In a zero-day attack, an attacker finds a vulnerability before a developer discovers and patches itThe danger of zero-day attacks lies in their unknownness. Because the vulnerabilities they target are undiscovered, traditional defense mechanisms or firewalls may not detect them as no specific patch exists, making attack success rates higher than for known attack types. This makes proactive and innovative security measures, like AI-enabled WAAP, crucial for organizations to stay secure.Why are zero-day attacks a threat to businesses?Zero-day attacks pose a unique challenge for businesses due to their unpredictable nature. Since these exploits take advantage of previously unknown vulnerabilities, organizations have no warning or time to deploy a patch before they are targeted. This makes zero-day attacks exceptionally difficult to detect and mitigate, leaving businesses vulnerable to potentially severe consequences. As a result, zero-day attacks can have devastating consequences for organizations of all sizes. They pose financial, reputational, and regulatory risks that can be difficult to recover from, including the following:Financial and operational damage: Ransomware attacks leveraging zero-day vulnerabilities can cripple operations and lead to significant financial losses due to data breach fines. According to recent studies, the average cost of a data breach in 2025 has surpassed $5 million, with zero-day exploits contributing significantly to these figures.Reputation and trust erosion: Beyond monetary losses, zero-day attacks erode customer trust. A single breach can damage an organization’s reputation, leading to customer churn and lost opportunities.Regulatory implications: With strict regulations like GDPR in the EU and similar frameworks emerging globally, organizations face hefty fines for data breaches. Zero-day vulnerabilities, though difficult to predict, do not exempt businesses from compliance obligations.The threat is made clear by recent successful examples of zero-day attacks. The Log4j vulnerability (Log4Shell), discovered in 2021, affected millions of applications worldwide and was widely exploited. In 2023, the MOVEit Transfer exploit was used to compromise data from numerous government and corporate systems. These incidents demonstrate how zero-day attacks can have far-reaching consequences across different industries.New trends in zero-day attacksAs cybercriminals become more sophisticated, zero-day attacks continue to evolve. New methods and technologies are making it easier for attackers to exploit vulnerabilities before they are discovered. The latest trends in zero-day attacks include AI-powered attacks, expanding attack surfaces, and sophisticated multi-vendor attacks.AI-powered attacksAttackers are increasingly leveraging artificial intelligence to identify and exploit vulnerabilities faster than ever before. AI tools can analyze vast amounts of code and detect potential weaknesses in a fraction of the time it would take a human. Moreover, AI can automate the creation of malware, making attacks more frequent and harder to counter.For example, AI-driven malware can adapt in real time to avoid detection, making it particularly effective in targeting enterprise networks and cloud-based applications. Hypothetically, an attacker could use an AI algorithm to scan for weaknesses in widely used SaaS applications, launching an exploit before a patch is even possible.Expanding attack surfacesThe digital transformation continues to expand the attack surface for zero-day exploits. APIs, IoT devices, and cloud-based services are increasingly targeted, as they often rely on interconnected systems with complex dependencies. A single unpatched vulnerability in an API could provide attackers with access to critical data or applications.Sophisticated multi-vector attacksCybercriminals are combining zero-day exploits with other tactics, such as phishing or social engineering, to create multi-vector attacks. This approach increases the likelihood of success and makes defense efforts more challenging.Prevent zero-day attacks with AI-powered WAAPWAAP solutions are becoming a cornerstone of modern cybersecurity, particularly in addressing zero-day vulnerabilities. Here’s how they help:Behavioral analytics: WAAP solutions use behavioral models to detect unusual traffic patterns, blocking potential exploits before they can cause damage.Automated patching: By shielding applications with virtual patches, WAAP can provide immediate protection against vulnerabilities while a permanent fix is developed.API security: With APIs increasingly targeted, WAAP’s ability to secure API endpoints is critical. It ensures that only authorized requests are processed, reducing the risk of exploitation.How WAAP stops AI-driven zero-day attacksAI is not just a tool for attackers—it is also a powerful ally for defenders. Machine learning algorithms can analyze user behavior and network activity to identify anomalies in real time. These systems can detect and block suspicious activities that might indicate an attempted zero-day exploit.Threat intelligence platforms powered by AI can also predict emerging vulnerabilities by analyzing trends and known exploits. This enables organizations to prepare for potential attacks before they occur.At Gcore, our WAAP solution combines these features to provide comprehensive protection. By leveraging cutting-edge AI and machine learning, Gcore WAAP detects and mitigates threats in real time, keeping web applications and APIs secure even from zero-day attacks.More prevention techniquesBeyond WAAP, layering protection techniques can further enhance your business’ ability to ward off zero-day attacks. Consider the following measures:Implement a robust patch management system so that known vulnerabilities are addressed promptly.Conduct regular security assessments and penetration testing to help identify potential weaknesses before attackers can exploit them.Educate employees about phishing and other social engineering tactics to decease the likelihood of successful attacks.Protect your business against zero-day attacks with GcoreZero-day attacks pose a significant threat to businesses, with financial, reputational, and regulatory consequences. The rise of AI-powered cyberattacks and expanding digital attack surfaces make these threats even more pressing. Organizations must adopt proactive security measures, including AI-driven defense mechanisms like WAAP, to protect their critical applications and data. By leveraging behavioral analytics, automated patching, and advanced threat intelligence, businesses can minimize their risk and stay ahead of attackers.Gcore’s AI-powered WAAP provides the robust protection your business needs to defend against zero-day attacks. With real-time threat detection, virtual patching, and API security, Gcore WAAP ensures that your web applications remain protected against even the most advanced cyber threats, including zero-day threats. Don’t wait until it’s too late—secure your business today with Gcore’s cutting-edge security solutions.Discover how WAAP can help stop zero-day attacks

What are virtual machines?

A virtual machine (VM), also called a virtual instance, is a software-based version of a physical computer. Instead of running directly on hardware, a VM operates inside a program that emulates a complete computer system, including a processor, memory, storage, and network connections. This allows multiple VMs to run on a single physical machine, each with its own operating system and applications, as if they were independent computers.VMS are useful because they provide flexibility, isolation, and scalability. Since each VM is self-contained, it can run different operating systems (like Windows, Linux, or macOS) on the same hardware without affecting other VMs or the host machine. This makes them ideal for testing software, running legacy applications, or efficiently using server resources in data centers. Because VMs exist as software, they can be easily copied, moved, or backed up, making them a powerful tool for both individuals and businesses.Read on to learn about types of VMs, their benefits, common use cases, and how to choose the right VM provider for your needs.How do VMs work?A virtual machine (VM) runs inside a program called a hypervisor, which acts as an intermediary between the VM and the actual computer hardware. Every time a VM needs to perform an action—such as running software, accessing storage, or using the processor—the hypervisor intercepts these requests and decides how to allocate resources like CPU power, memory, and disk space. You can think of a hypervisor as an operating system for VMs, managing multiple virtual machines on a single physical computer. Popular hypervisors like VirtualBox and VMware enable users to run multiple operating systems simultaneously while providing strong isolation.Modern hypervisors optimize performance by giving VMs direct access to certain hardware components when possible, reducing the need for constant intervention. However, some level of overhead remains because the hypervisor still needs to manage and coordinate resources efficiently. This means that while VMs can leverage most of the system’s hardware, they can’t use 100% of it, as some processing power is always reserved for managing virtualization itself. This small trade-off is often worth it, as hypervisors keep each VM isolated and secure, preventing one VM from interfering with another.VM layersFigure 1 illustrates the layers of a system virtual machine setup. The layer model can vary depending on the hypervisor. Some hypervisors include a built-in host operating system, while modern hardware offers native virtualization support. Many hypervisors can also manage multiple physical machines and VMs efficiently.VM snapshots are an essential feature in cloud computing, allowing users to quickly restore a virtual machine to a previous state.Figure 1: Layers of system virtual machinesHypervisors that emulate hardware architectures different from what the guest OS expects have a bigger overhead, as they can’t relay commands directly to the hardware without first translating them.VM snapshotsVM snapshots are an essential feature in cloud computing, allowing users to quickly restore a virtual machine to a previous state. The hypervisor can save the complete state of the VM and restore it at a later time to skip the boot process of the guest OS. The hypervisor can also move these snapshots between different physical machines, making the software running in the VM completely independent from the underlying hardware.What are the benefits of using VMs?Virtual machines offer benefits including resource efficiency, isolation, simplified operations, easy migration, faster deployment, cost savings, and security. Let’s look at these one by one.Multiple VMs can run on a single physical machine, making sharing resources between various guest operating systems easier. This is especially important when each guest OS needs to be isolated from the others, such as when they belong to different customers of a cloud service provider. Sharing resources through VMs makes running a server cheaper because you don’t have to buy or rent a whole physical machine, but only parts of it.Since VMs abstract the underlying hardware, they also improve resilience. If the physical machine fails, the hypervisor can perform a quick recovery by moving the snapshots to another machine without changing the guest OS installations to minimize downtime. This abstraction also allows operations teams to focus their deployment efforts on a standardized VM instead of considering different physical implementations.Migrations become easier with snapshots as you can simply move them to a faster machine without modifying the software running inside the VM.Faster deployments are possible because starting a VM is just a software execution instead of setting up a physical server in a data center. While you had to buy a server or rent it for months, with fast deployments, you can now rent a machine for hours, minutes, or even seconds, which allows for quite some savings.Modern CPUs have built-in virtualization features that enable easy resource sharing and enforce the isolation at the hardware layer. This prevents the services of one VM from accessing the resources of the others, improving security compared to running multiple apps inside one OS.Common use cases for VMsVMs have a range of use cases. Let’s look at the most popular ones.Cloud computingThe most popular use case is cloud computing, where VMs allow the secure sharing of the cloud provider’s resources, enabling their customers to rent only the resources they need for the period their workload will run.Software development and testingSoftware development often requires specific tools and libraries that aren’t available on a production machine, so having a development VM with all these tools preinstalled can be helpful. An example is cloud IDEs, which look and feel like regular IDEs but run on a cloud VM. A developer can have one for each project with the required dev tools installed.VMs also allow a developer to set up a machine for software testing that looks exactly like the production environment. Here, the opposite of the development VM is required; it should not have any development tools installed because they would also be missing from production.Cross-platform developmentA special case of the software development use case is cross-platform development. When you implement an app for Android or iOS, for example, you usually don’t do this on a mobile device but on your computer. With VMs, developers can simulate different hardware environments, enabling cross-platform testing without requiring physical devices.Legacy system supportIf the hardware your application requires is no longer in production, a VM might be the only way to keep running your software without reimplementing it. This is similar to the cross-platform development use case, as the VM emulates different hardware, but the difference is that the hardware no longer exists.How to choose the right VM providerTo find the right provider for your workload, the most important factor to assess is your own workload requirements. Ask the following questions and compare the answers to what providers offer.Is your workload compute or I/O-bound?Many workloads, like web servers, are I/O-bound. They don’t make complex calculations but rather simply load data and send it over the network. If you need a VM for an I/O-bound workload, you care more about disk and memory size, as well as network speed.However, compute-heavy workloads, such as AI inference or Kubernetes clusters, require careful resource allocation. If you’re evaluating whether to run Kubernetes on bare metal or VMs, check out our white paper on Bare Metal vs. VM-based Kubernetes Clusters for an in-depth comparison.If your workload is compute-bound instead, you need a high-performance CPU or a GPU and loads of memory. An AI inference engine, for example, only sends a bit of text to a client, but it does many calculations to generate this text.How long will your workload run?Web servers usually run indefinitely, but some workloads only run a few hours or minutes. If you’re doing AI training, you don’t want to pay for your huge VM cluster 24/7 if it only runs a few hours or days a week. In such cases, looking for a provider that allows renting your desired VM type hourly on a pay-as-you-go model might be worthwhile.Certain cloud providers offer cost-effective spot instances, which provide lower prices for non-critical workloads that can tolerate interruptions. These cheap VMs can get shut down at any time with minimal notice, but if your calculations aren’t time-critical, you might save quite a bit of money here.How does your workload scale?Scaling in the cloud is usually done horizontally. That is, by adding more VMs and distributing the work between them. Workloads can have different requirements for when and how fast they must be added and removed.In the AI training example, you might know in advance that one training takes more resources than the other, so you can provision enough VMs when starting. However, a web server workload might change its requirements constantly. Hence, you need a load balancer that automatically scales the instances up and down depending on the number of clients that want to access your service.Do you handle sensitive data?You might have to comply with specific laws and regulations depending on your jurisdiction(s) and industry. This means you must check whether the cloud provider also complies. How secure are their data centers? Where are they located? Do they support encryption in transit, at rest, and in process?What are your reliability requirements?Reliability is a question of costs and, again, of compliance. You might get into financial or regulatory troubles if your workload can’t run. Cloud providers often boast about their guaranteed uptimes, but remember that 99% uptime a year still means over three days of potential downtime. Check your needs and then seek a provider that can meet them reliably.Do you need customer support?If your organization doesn’t have the know-how for operating VMs in the cloud, you might need technical support from the provider. Most cloud providers are self-service, offering you a GUI and an API to manage resources. If your business lacks the resources to operate VMs, seek out a provider that can manage VMs on your behalf.SummaryVMs are a core technology for cloud computing and software development alike. They enable efficient resource sharing, improve security with hardware-enforced guest isolation, and simplify migration and disaster recovery. Choosing the right VM provider starts with understanding your workload requirements, from resource allocation to security and scalability.Maximize cloud efficiency with Gcore Virtual Machines—engineered for high performance, seamless scalability, and enterprise-grade security at competitive pricing. Whether you need to run workloads at scale or deploy applications in seconds, our VMs provide enterprise-grade security, built-in resilience, and optimized resource allocation, all powered by cutting-edge infrastructure. With global reach, fast provisioning, egress traffic included, and pay-as-you-go pricing, you get the scalability and reliability your business needs without overspending. Start your journey with Gcore VMs today and experience cloud computing that’s built for speed, security, and savings.Discover Gcore VMs

Why do bad actors carry out Minecraft DDoS attacks?

One of the most played video games in the world, Minecraft, relies on servers that are frequently a target of distributed denial-of-service (DDoS) attacks. But why would malicious actors target Minecraft servers? In this article, we’ll look at why these servers are so prone to DDoS attacks and uncover the impact such attacks have on the gaming community and broader cybersecurity landscape. For a comprehensive analysis and expert tips, read our ultimate guide to preventing DDoS attacks on Minecraft servers.Disruption for financial gainFinancial exploitation is a typical motivator for DDoS attacks in Minecraft. Cybercriminals frequently demand ransom to stop their attacks. Server owners, especially those with lucrative private or public servers, may feel pressured to pay to restore normalcy. In some cases, bad actors intentionally disrupt competitors to draw players to their own servers, leveraging downtime for monetary advantage.Services that offer DDoS attacks for hire make these attacks more accessible and widespread. These malicious services target Minecraft servers because the game is so popular, making it an attractive and easy option for attackers.Player and server rivalriesRivalries within the Minecraft ecosystem often escalate to DDoS attacks, driven by competition among players, servers, hosts, and businesses. Players may target opponents during tournaments to disrupt their gaming experience, hoping to secure prize money for themselves. Similarly, players on one server may initiate attacks to draw members to their server and harm the reputation of other servers. Beyond individual players, server hosts also engage in DDoS attacks to disrupt and induce outages for their rivals, subsequently attempting to poach their customers. On a bigger scale, local pirate servers may target gaming service providers entering new markets to harm their brand and hold onto market share. These rivalries highlight the competitive and occasionally antagonistic character of the Minecraft community, where the stakes frequently surpass in-game achievements.Personal vendettas and retaliationPersonal conflicts can occasionally be the source of DDoS attacks in Minecraft. In these situations, servers are targeted in retribution by individual gamers or disgruntled former employees. These attacks are frequently the result of complaints about unsolved conflicts, bans, or disagreements over in-game behavior. Retaliation-driven DDoS events can cause significant disruption, although lower in scope than attacks with financial motivations.Displaying technical masterySome attackers carry out DDoS attacks to showcase their abilities. Minecraft is a perfect testing ground because of its large player base and community-driven server infrastructure. Successful strikes that demonstrate their skills enhance reputations within some underground communities. Instead of being a means to an end, the act itself becomes a badge of honor for those involved.HacktivismHacktivists—people who employ hacking as a form of protest—occasionally target Minecraft servers to further their political or social goals. These attacks are meant to raise awareness of a subject rather than be driven by personal grievances or material gain. To promote their message, they might, for instance, assault servers that are thought to support unfair policies or practices. This would be an example of digital activism. Even though they are less frequent, these instances highlight the various reasons why DDoS attacks occur.Data theftMinecraft servers often hold significant user data, including email addresses, usernames, and sometimes even payment information. Malicious actors sometimes launch DDoS attacks as a smokescreen to divert server administrators’ attention from their attempts to breach the server and steal confidential information. This dual-purpose approach disrupts gameplay and poses significant risks to user privacy and security, making data theft one of the more insidious motives behind such attacks.Securing the Minecraft ecosystemDDoS attacks against Minecraft are motivated by various factors, including personal grudges, data theft, and financial gain. Every attack reveals wider cybersecurity threats, interferes with gameplay, and damages community trust. Understanding these motivations can help server owners take informed steps to secure their servers, but often, investing in reliable DDoS protection is the simplest and most effective way to guarantee that Minecraft remains a safe and enjoyable experience for players worldwide. By addressing the root causes and improving server resilience, stakeholders can mitigate the impact of such attacks and protect the integrity of the game.Gcore offers robust, multi-layered security solutions designed to shield gaming communities from the ever-growing threat of DDoS attacks. Founded by gamers for gamers, Gcore understands the industry’s unique challenges. Our tools enable smooth gameplay and peace of mind for both server owners and players.Want an in-depth look at how to secure your Minecraft servers?Download our ultimate guide

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.